регистрация компании дать объявление быстрый поиск лента публикаций восстановление доступа о портале
    
Строительный портал СтройПлан.ру
Подбор проекта Новости отраслиПубликации
 
КОРЗИНА (0)  
 >>>  ПОИСК ДОКУМЕНТОВ  

ЦЕНТРАЛЬНЫЙ                                                              ОРДЕНА  ТРУДОВОГО
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ                         КРАСНОГО ЗНАМЕНИ
И ПРОЕКТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ               НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ
ИНСТИТУТ ПРОМЫШЛЕННЫХ                               ИНСТИТУТ БЕТОНА
ЗДАНИЙ И СООРУЖЕНИЙ                                          И ЖЕЛЕЗОБЕТОНА
(ЦНИИпромзданий) ГОССТРОЯ СССР                     (НИИЖБ) ГОССТРОЯ СССР

 

ПОСОБИЕ

по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов

без предварительного напряжения

арматуры

СНиП 2.03.01-84)

Утверждено

приказом ЦНИИпромзданий

Госстроя СССР

от 30 ноября 1984 г. № 106а

 

Рекомендовано к изданию решением секции несущих конструкций научно-технического совета ЦНИИпромзданий Госстроя СССР.

Содержит требования СНиП 2.03.01-84 к проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры; положения, детализирующие эти требования; приближенные способы и примеры расчета, а также рекомендации, необходимые для проектирования.

Для инженеров-проектировщиков, а также студентов строительных вузов.

 

Табл. 59, ил. 134.

 

При пользовании Пособием следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале „Бюллетень строи­тельной техники", „Сборнике изменений к строительным нормам и правилам" Госстроя СССР и информационном указателе „Государственные стандарты СССР" Госстандарта.

 

ПРЕДИСЛОВИЕ

Пособие содержит положения по проектиро­ванию бетонных и железобетонных конструкций промышленных и гражданских зданий и сооружений из тяжелых и легких бетонов, выполняемых без предварительного напряжения арматуры.

В Пособии приведены требования СНиП 2.03.01-84 к проектированию упомянутых бетонных и желе­зобетонных конструкций; положения, детализирую­щие эти требования; приближенные способы расче­та, а также дополнительные рекомендации, необхо­димые для проектирования. Номера пунктов, таблиц и приложений СНиП 2.03.01-84 указаны в скобках.

В каждом разделе Пособия даны примеры рас­чета элементов наиболее типичных случаев, встре­чающихся в практике проектирования.

Материалы для проектирования редко встре­чающихся ненапрягаемых конструкций (например, данные для арматуры, упрочненной вытяжкой; расчет элементов с арматурой классов A-IV, A-V и A-VI, имеющей условный предел текучести; расчет элементов на выносливость и т.п.) в настоящее Пособие не включены, а приведены в „Пособии по проектированию предварительно напряженных же­лезобетонных конструкций из тяжелых и легких бетонов" (М., ЦИТП Госстроя СССР, 1986).

В Пособии не приведены особенности проектиро­вания конструкций статически неопределимых и сборно-монолитных, с жесткой арматурой, а также некоторых сооружений (труб, силосов и др.), в частности не рассмотрены вопросы, связанные с определением усилий в этих конструкциях. Эти вопросы освещаются в соответствующих Пособиях и Рекомендациях.

Единицы физических величин, приведенные в Пособии, соответствуют „Перечню единиц физи­ческих величин, подлежащих применению в строи­тельстве". При этом силы выражаются в ньютонах (Н) или в килоньютонах (кН); линейные размеры в мм (в основном для сечений элементов) или в м (для элементов или их участков); напряжения, сопротивления, модули упругости в мегапаскалях (МПа); распределенные нагрузки и усилия в кН/м или Н/мм. Поскольку 1 МПа = 1 Н/мм2, при использовании в примерах расчета формул, включающих величины в МПа (напряжения, сопро­тивления и т. п.), остальные величины приводятся только в Н и мм (мм2).

В таблицах нормативные и расчетные сопротив­ления и модули упругости материалов приведены в МПа и в кгс/см2.

В Пособии использованы буквенные обозначения и индексы к ним в соответствии с СТ СЭВ 1565-79. Основные буквенные обозначения применяемых ве­личин приведены в прил. 5. Поскольку для индек­сов используются только буквы латинского алфа­вита, соответствующие этим индексам поясняющие слова приняты не русские, а, как правило, англий­ские. В связи с этим в прил. 5 приведены также все примененные индексы и соответствующие им рус­ские поясняющие слова.

Пособие    разработано    ЦНИИпромзданий Госстроя СССР (инженеры Б.Ф. Васильев, И.К. Ни­китин, А.Г. Королькова; канд. техн. наук Л.Л Лемыш) и НИИЖБ Госстроя СССР (доктора техн. наук А.А. Гвоздев, Ю.П. Гуща, А.С. Залесов; кан­дидаты техн. наук Е.А. Чистяков, П.К. Руллэ, Н.М. Мулин,    Л.Н. Зайцев,    В.В. Фигаровский, Н.Г. Матков, Н.И. Катин, А.М. Фридман, Н.А. Корнев, Т.А.Кузмич) с участием НИЛ ФХММ и ТП Главмоспромстройматериалов (д-р техн. наук С.Ю. Цейтлин; кандидаты техн. наук Э.Г. Ратц, Я.М. Якобсон; инж. Е.З. Ерманок), КГБ Мосоргстройматериалов (канд. техн. наук B.C. Щукин; инженеры В.Л. Айзинсон, Е.М. Травкин, Б.И. Фельцман), ДИСИ Минвуза УССР (д-р техн. наук В.М. Ба­ташов), Гипростроммаша Минстройдормаша СССР (инженеры Л.А. Волков, М.А. Соломович, Т.П. Заневская) и ЦНИИЭП жилища Госстроя СССР (канд. техн. наук Н.С. Стронгин; инж. Е.М.  Сурманидзе).

 

Отзывы и   замечания просим присылать по адресам:

127238, Москва, Дмитровское шоссе, 46, ЦНИИпромзданий;

109389, Москва, 2-я Институтская, 6, НИИЖБ.

 

 

1. ОБЩИЕ РЕКОМЕНДАЦИИ

ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Рекомендации настоящего Пособия распро­страняются на проектирование бетонных и железо­бетонных конструкций, выполняемых без предва­рительного напряжения арматуры из тяжелого, мел­козернистого и легкого бетонов и эксплуатируе­мых при систематическом воздействии температур не выше 50°С и не ниже минус 70°С.

 

Примечания: 1. Рекомендации Пособия не распро­страняются на проектирование бетонных и железобетон­ных конструкций гидротехнических сооружений, мостов, транспортных тоннелей, труб под насыпями, покрытий автомобильных дорог и аэродромов.

2. Термины бетоны тяжелые", бетоны мелкозернис­тые" и бетоны легкие" применяются в соответствии с ГОСТ 25192-82.

Легкие бетоны могут быть плотной и поризованной структур, поэтому в Пособии для краткости используются термины легкий бетон" для обозначения легких бетонов плотной структуры и поризованный бетон" для обо­значения легких бетонов поризованной структуры с меж­зерновыми пустотами в уплотненной бетонной смеси свыше 6 %.

 

1.2. Вид легких и поризованных бетонов, а также область их применения приведены в прил. 1.

1.3. Бетонные и железобетонные конструкции зданий и сооружений, предназначенные для работы в условиях агрессивной среды и повышенной влаж­ности, рекомендуется проектировать с учетом требований СНиП 2.03.11-85.

1.4 (1.4). Элементы сборных конструкций долж­ны отвечать условиям механизированного изготов­ления на специализированных предприятиях.

Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузо­подъемность монтажных механизмов, условия изго­товления и транспортирования.

1.5 (1.5). Для монолитных конструкций следует предусматривать унифицированные размеры, позво­ляющие применять инвентарную опалубку, а также укрупненные пространственные арматурные кар­касы.

1.6 (1.6). В сборных конструкциях особое вни­мание должно быть обращено на прочность и дол­говечность соединений.

Конструкции узлов и соединений элементов должны обеспечивать с помощью различных кон­структивных и технологических мероприятий надежную передачу усилий, прочность самих эле­ментов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.

1.7 (1.7). Бетонные элементы применяются:

а) преимущественно в конструкциях, работаю­щих на сжатие при малых эксцентриситетах продольной силы, не превышающих значений, ука­занных в п. 3.4;

б) в отдельных случаях в конструкциях, работаю­щих на сжатие с большими эксцентриситетами, а также в изгибаемых конструкциях, когда их раз­рушение не представляет непосредственной опас­ности для жизни людей и сохранности оборудова­ния (элементы, лежащие на сплошном основании, и др.).

 

Примечание. Конструкции рассматриваются как бетонные, если их прочность в стадии эксплуатации обес­печивается одним бетоном.

 

1.8 (1.8). Расчетная зимняя температура наружного воздуха принимается как средняя тем­пература воздуха наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 2.01.01.82. Расчетные технологические тем­пературы устанавливаются заданием на проектиро­вание.

Влажность воздуха окружающей среды опреде­ляется как средняя относительная влажность наруж­ного воздуха наиболее жаркого месяца в зависи­мости от района строительства согласно СНиП 2.01.01-82 или как относительная влажность внутреннего воздуха помещений отапливаемых зда­ний.

1.9. Численные значения приведенных в настоя­щем Пособии расчетных характеристик бетона и арматуры, предельно допустимых величин ширины раскрытия трещин и прогибов применяются только при проектировании. Для оценки качества кон­струкций следует руководствоваться требованиями соответствующих государственных стандартов и технических условий.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.10 (1.10). Бетонные и железобетонные кон­струкции должны удовлетворять требованиям рас­чета по несущей способности (предельные состоя­ния первой группы) и по пригодности к нормаль­ной эксплуатации (предельные состояния второй группы).

а) Расчет по предельным состояниям первой группы должен обеспечивать конструкции от:

хрупкого, вязкого или иного характера разру­шения (расчет по прочности с учетом в необходи­мых случаях прогиба конструкции перед разруше­нием);

потери устойчивости формы конструкции или ее положения;

усталостного разрушения (расчет на выносли­вость конструкций, находящихся под воздействием многократно повторяющейся нагрузки подвиж­ной или пульсирующей);

разрушения под совместным воздействием сило­вых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздей­ствия агрессивной среды, действия попеременного замораживания и оттаивания и т. п.).

б) Расчет по предельным состояниям второй группы должен обеспечивать конструкции от:

чрезмерного раскрытия трещин (расчет по рас­крытию трещин);

чрезмерных перемещений прогибов, углов перекоса и поворота, колебаний (расчет по дефор­мациям).

Расчет бетонных конструкций по предельным со­стояниям второй группы, а также на выносливость может не производиться.

 

Примечания: 1. Расчет на действие многократно повторяющейся нагрузки, в том числе на выносливость, выполняется в соответствии с рекомендациями Пособия по проектированию предварительно напряженных желе­зобетонных конструкций из тяжелых и легких бетонов" (М., ЦИТП Госстроя СССР, 1986).

2. Расчеты на устойчивость формы или положения кон­струкции, а также на совместное воздействие силовых фак­торов и неблагоприятных влияний внешней среды выпол­няются по соответствующим нормативным документам или Пособиям.

 

1.11 (1.11). Расчет по предельным состояниям конструкции в целом, а также отдельных ее элемен­тов должен, как правило, производиться для всех стадий изготовления, транспортирования, возве­дения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным реше­ниям.

1.12 (1.12). Значения нагрузок и воздействий, коэффициентов «надежности по нагрузке gf, коэф­фициентов сочетаний, а также подразделение на­грузок на постоянные и временные должны приниматься в соответствии с требованиями СНиП 2.01.07-85.

Значения нагрузок необходимо умножать на коэффициенты надежности по назначению, прини­маемые согласно Правилам учета степени ответ­ственности зданий и сооружений при проектирова­нии конструкций"1 , утвержденным Госстроем СССР.

Нагрузки, учитываемые при расчете по предель­ным состояниям второй группы (эксплуатацион­ные), следует принимать согласно пп. 1.15 и 1.17. При этом к длительным нагрузкам относится также часть полного значения кратковременных нагру­зок, оговоренных в СНиП 2.01.07-85, а вводимую в расчет кратковременную нагрузку следует прини­мать уменьшенной на величину, учтенную в дли­тельной нагрузке (например, если снеговая нагруз­ка для III района составляет s = 1000 Н/м2, то сне­говая длительная нагрузка будет равна s = 0,3 х 1000 = 300 Н/м2, а снеговая кратковременная нагрузка s = 1000 300 = 700 Н/м2).

Коэффициенты сочетаний относятся к полному значению кратковременных нагрузок.

Для не защищенных от солнечной радиации кон­струкций, предназначенных для работы в клима­тическом подрайоне IVA согласно СНиП 2.01.01-82, при расчете должны учитываться температурные климатические воздействия.

1.13 (1.13). При расчете, элементов сборных кон­струкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагруз­ку от веса элемента следует вводить с коэффициен­том динамичности, равным:

при транспортировании ......... 1,60

      подъеме и монтаже ..........1,40

В этом случае следует учитывать также коэффи­циент надежности по нагрузке.

1.14 (1.15). Усилия в статически неопределимых железобетонных конструкциях от нагрузок и выну­жденных перемещений (вследствие изменения температуры, влажности бетона, смещения опор и т.п.), а также усилия в статически определимых конструкциях при расчете их по деформирован­ной схеме следует, как правило, определять с уче­том неупругих деформаций бетона и арматуры и наличия трещин.

_____________

1 См.: Бюллетень строительной техники, 1981, 7.

 

Для конструкций, методика расчета которых с учетом неупругих свойств железобетона не раз­работана, а также для промежуточных стадий рас­чета с учетом неупругих свойств железобетона уси­лия в статически неопределимых конструкциях допускается определять в предположении их линей­ной упругости.

1.15 (1.16). Ширина непродолжительного и про­должительного раскрытия трещин для элементов, эксплуатируемых в условиях неагрессивной среды, не должна превышать величин, приведенных в табл. 1.

Элементы, указанные в поз. 1 а табл. 1, можно проектировать без предварительного напряжения лишь при специальном обосновании.

 

Таблица 1 (1, 2)

 

 

Условия работы

Предельно допустимая ширина, мм,

раскрытия трещин

конструкций

непродолжи­тельного

acrc1

продолжительного

acrc2

1. Элементы, воспринимаю­щие давление жидкостей или газов при сечении:

а) полностью растяну­том

 

 

0,2

 

 

0,1

б) частично сжатом

 

0,3

0,2

2. Элементы, воспринимаю­щие давление сыпучих тел

 

0,3

0,2

3. Элементы, эксплуатируе­мые в грунте при перемен­ном уровне грунтовых вод

 

0,3

0,2

4. Прочие элементы

 

0,4

0.3

 

Примечание. Под непродолжительным раскры­тием трещин понимается их раскрытие при совместном дей­ствии постоянных, длительных и кратковременных нагру­зок, под продолжительным только постоянных и длитель­ных нагрузок. При этом коэффициент надежности по на­грузке принимается равным единице.

 

1.16 (1.19). Для железобетонных слабоармиро­ванных элементов, характеризующихся тем, что их несущая способность исчерпывается одновременно с образованием трещин в бетоне растянутой зоны, площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15 %.

Такое увеличение армирования рекомендуется производить при выполнении условия

где  Mcrc момент трещинообразоьания, опреде­ляемый согласно п. 4.2 с заменой значения Rbt,ser на 1,2 Rbt,ser;

Мu момент, соответствующий исчерпанию несущей способности и определяемый согласно пп. 3.153.80; для внецентренно сжатых и растянутых элемен­тов значения Мu определяются отно­сительно оси, проходящей через ядро­вую точку, наиболее удаленную от растянутой зоны (см. п. 4.2).

Это требование может не распространяться на элементы, лежащие на сплошном основании.

1.17 (1.20). Прогибы элементов железобетонных конструкций не должны превышать предельно до­пустимых значений, устанавливаемых с учетом сле­дующих требований:

а) технологических (условия нормальной работы кранов, технологических установок, машин и т. п.);

б) конструктивных (влияние соседних элемен­тов, ограничивающих деформации; необходимость выдерживания заданных уклонов и т. п.);

в) эстетических (впечатление людей о пригод­ности конструкции).

Значения предельно допустимых прогибов при­ведены в табл. 2.              

 

Таблица 2 (4)

 

Элементы конструкций

Предельно допу­стимые прогибы

1. Подкрановые балки при кранах:

ручных

 

   l_  

500

электрических

 

   l_

600

2. Перекрытия с плоским потолком и эле­менты покрытия (кроме указанных в поз. 4) при пролетах, м:

       l < 6

 

 

 

   l_

200

 6 £ l £ 7,5

 

3 см

             l >7,5

 

   l_

250

3. Перекрытия с ребристым потолком и элементы лестниц при пролетах, м :

      l < 5   

 

 

   l_

200

5 £ l £ 10

 

2,5 см

            l >10

 

   l_

400

4. Элементы покрытий сельскохозяй­ственных зданий производственного назначения при пролетах, м:

      l < 6

 

 

 

   l_

150

6 £ l £ 10

 

4 см

           l > 10

 

   l_

250

5. Навесные стеновые панели (при рас­чете из плоскости) при пролетах, м:

            l < 6

 

 

   l_

200

 6 £ l £ 7,5

 

3 см

            l > 7,5

 

   l_

250

 

Обозначение, принятое в табл. 2: l пролет балок или плит; для консолей принимается значение l, равное удвоенному вылету консоли.

 

Расчет по деформациям должен производиться при ограничении: технологическими или конструк­тивными требованиями на действие постоянных, длительных и кратковременных нагрузок; эстети­ческими требованиями на действие постоянных и длительных нагрузок. При этом принимается gf = 1,0.

При действии постоянных, длительных и кратко­временных нагрузок прогиб балок или плит во всех случаях не должен превышать 1/150 пролета и 1/75 вылета консоли.

Значения предельно допустимых прогибов могут быть увеличены на высоту строительного подъема, если это не ограничивается технологическими или конструктивными требованиями.

Если в нижележащем помещении с гладким потолком имеются расположенные поперек пролета элемента l постоянные перегородки (не являющиеся опорами) с расстоянием между ними lp, то прогиб элемента в пределах расстояния lp (отсчитываемый от линии, соединяющей верхние точки осей перего­родок) может быть допущен до 1/200 lp, при этом предельный прогиб всего элемента должен быть не более 1/500 l.

1.18 (1.20). Для не связанных с соседними эле­ментами конструкций плит перекрытий, лестнич­ных маршей, площадок и т. п. должна производить­ся дополнительная проверка по зыбкости: добавоч­ный прогиб от кратковременно действующей сосре­доточенной нагрузки 1000 Н при наиболее невыгод­ной схеме ее приложения должен быть не более 0,7 мм.

1.19 (1.22). Расстояния между температурно-уса­дочными швами, как правило, должны устанавли­ваться расчетом. Расчет допускается не производить, если при расчетной температуре наружного воздуха минус 40 °С и выше расстояние между температур­но-усадочными швами не превышает значений, при­веденных в табл. 3. Для каркасных зданий и соору­жений без мостовых опорных кранов при наличии в рассматриваемом направлении связей (диафрагм жесткости) значения, указанные в табл. 3, допуска­ется умножать на коэффициент, равный:

 

но не менее единицы,

где dDt коэффициент, принимаемый равным для отапливаемых зданий и   для неотапливаемых зданий и сооружений (здесь Dtw, Dtc расчетные изменения температуры, °С, определяемые в соответствии со СНиП 2.01.07-85, e относительное уд­линение горизонтальных элементов от вертикальных нагрузок. Допускается принимать для железобетонных эле­ментов  e = 1 · 104, для стальных e = 3 · 104);

 (здесь l длина колонны между точками закрепления, h высота сече­ния колонны в рассматриваемом направ­лении);                        

 (здесь jext влаж­ность наружного воздуха, %, в наиболее жаркий месяц года, принимаемая в соот­ветствии со СНиП 2.01.01-82).

При учете коэффициента d расстояния между температурно-усадочными швами должны быть не более 150 м для отапливаемых зданий из сборных конструкций, 90 м для отапливаемых зданий из сборно-монолитных и монолитных конструкций; для неотапливаемых зданий и сооружений указан­ные значения следует уменьшать на 20 %.

 

Таблица 3

 

 

 

Конструкции

Наибольшие расстояния, м,

между температурно-усадочными швами, допускаемые

без расчета, для конструкций, находящихся

 

внутри отапливаемых зданий или

в грунте

внутри неотапливаемых зданий

на откры­том воздухе

1. Бетонные:

а) сборные

 

40

 

35

 

30

б) монолитные:

при конструктивном армировании

 

30

 

25

 

20

без конструктивного армирования

20

15

10

2. Железобетонные:

а) сборно-каркасные:

одноэтажные

 

 

72

 

 

60

 

 

48

многоэтажные

60

50

40

б) спорно-монолитные и монолитные:

каркасные

 

 

50

 

 

40

 

 

30

сплошные

40

30

25

 

Примечание. Для железобетонных каркасных зда­ний (поз. 2) значения расстояния между температурно-усадочными швами определены при отсутствии связей или ори расположении связей в середине температурного блока.

 

1.20. При расчете перекрытая по всем предель­ным состояниям вес перегородок, расположенных вдоль пролета плит, учитывается следующим обра­зом:

а) нагрузка от веса глухой жесткой перегородки (например, железобетонной сборной, выполняемой из горизонтальных элементов, железобетонной или бетонной монолитной, каменной и т. п.) прикладывается сосредоточенно на расстоянии 1/12 длины пе­регородки от ее краев;

б) при наличии в жесткой перегородке одного проема, целиком расположенного в пределах одной половины перегородки, нагрузка от веса меньшего простенка (включая вес половины надпроемной части перегородки) прикладывается сосредоточенно на расстоянии 1/3 ширины этого простенка от края перегородки, а нагрузка от веса остальной части перегородки на расстоянии 1/12 длины этой части перегородки от краев проема и перегородки; при ином расположении проема нагрузка прикладывает­ся на расстоянии 1/18 длины соответствующих частей перегородки от их краев;

в) при наличии в жесткой перегородке двух прое­мов и более нагрузка от веса перегородки прикла­дывается сосредоточенно по центрам участков, опи­рающихся на перекрытие;

г) для прочих перегородок 60 % их веса прини­мается распределенным по длине перегородки (на участках между проемами), а 40% в виде со­средоточенных сил, приложенных в соответствии с подпунктами а" в".

1.21. Распределение местной нагрузки между эле­ментами сборных перекрытий, выполняемых из многопустотных или сплошных плит, при условии обеспечения качественной заливки швов между плитами производится с учетом рекомендаций:

а) при расчете по всем предельным состояниям принимается следующее распределение нагрузки от веса перегородок, расположенных вдоль пролета равных по ширине плит:

если перегородка расположена в пределах одной плиты, на эту плиту передается 50 % веса перегород­ки, а по 25 % ее веса передается на две смежные плиты;

если перегородка опирается на две соседние пли­ты, вес перегородки распределяется поровну между ними;

б) при расчете по предельным состояниям второй группы местные сосредоточенные нагрузки, распо­ложенные в пределах средней трети пролета плиты, распределяются на ширину, не превышающую длины пролета; при расчете по прочности такое рас­пределение сосредоточенных нагрузок может быть допущено лишь при условии соединения смежных плит по длине шпонками, проверяемыми расчетом (см. п. 3.115).

 

Примечание. Если перекрытие образовано двумя плитами, опертыми по трем сторонам, при расположении перегородки в пределах одной плиты на эту плиту передает­ся 75 % веса перегородки; в этом случае нагрузка от веса перегородки на перекрытие передается, согласно п. 1.20, при расположении перегородки как вдоль, так и поперек плиты.

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ

И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

БЕТОН

2.1 (2.3). Для бетонных и железобетонных кон­струкций следует предусматривать бетоны следую­щих классов и марок:

а) классов по прочности на сжатие:

тяжелый бетон   В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30;                                 В35; В40; В45; В50; В55; В60;

мелкозернистый бетон групп:

А естественного твердения или подверг­нутый тепловой обработке при ат­мосферном давлении на песке с мо­дулем крупности свыше 2,0 В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40;

Б то же, с модулем крупности 2,0 и менее В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30;

В подвергнутый автоклавной обработ­ке В15; В20; В25; В30; В35; В40; В45; В50; В55; В60;

легкий бетон при марках по средней плотности:

    D800, D900 В2,5; В3,5; В5; В7,5*;

D1000, D1100 В2,5; В3,5; В5; В7,5; В10; В12,5*;

D1200, D1300 В2,5; В3,5; В5; В7,5; В10; В12,5; В15*;

D1400, D1500 В3,5; В5; В7,5; В10; В12,5; В15; В20*; В25*; В30*;

D1600, D1700 В5; В7,5; В10; В12,5; В15; В20; В25*; В30*; В35*;

D1800, D1900 В10; В12,5; В15; В20; В25*; В30*; В35*; В40*;

             D2000 B20; B25; В30; В35*; В40*;

поризованный бетон при марках по средней плотности:

D800, D900, D1000, B2,5; В3,5; В5; В7,5;

D1100, D1200, D1300

                      D1400 В3,5; В5; В7,5;

б) марок по морозостойкости:

тяжелый и     F50; F75; F100; F150;

мелкозернис-     F200; F300; F400; F500;

тый бетоны

легкий бетон F25; F35; F50; F75; F100; F150; F200; F300;

F400; F500;

поризован-  F15; F25; F35; F50;

ный бетон          F75; F100;

в) марок по водонепроницаемости — W2; W4; W6; W8; W10; W12;

г) марок no средней плотности:

легкий бетон   D800; D900; D1000; D1100; D1200; D1300; D1400; D1500; D1600; D1700; D1800; D1900; D2000;

поризован-            D800; D900; D1000; D1100;

ный бетон              D1200; D1300; D1400.

 

_____________

* Данный класс легкого бетона на природных заполни­телях, шлаковой пемзе и аглопорите может применяться лишь при согласовании с заводом-изготовителем.

 

Примечания : 1. Для конструкций, прочность на растяжение которых имеет главенствующее значение, уста­навливаются классы бетона по прочности на осевое растя­жение Bt согласно СНиП 2.03.01-84.

2. Термины класс бетона" и марка бетона" см. ГОСТ 25192-82.

3. Из поризованного бетона по настоящему Пособию могут проектироваться только внецентренно сжатые бетон­ные и железобетонные элементы.

 

2.2 (2.4). Возраст бетона, отвечающий его классу по прочности на сжатие, назначается при проектиро­вании исходя из возможных реальных сроков загружения конструкции проектными нагрузками, способа возведения, условий твердения бетона.

При отсутствии этих данных класс бетона устанав­ливается в возрасте 28 сут.

Значение отпускной прочности бетона в элемен­тах сборных конструкций следует назначать в соот­ветствии с ГОСТ 13015.083 и стандартами на кон­струкции конкретных видов.

2.3 (2.5). Для железобетонных конструкций не допускается применять:

тяжелый и мелкозернистый бетоны класса по прочности на сжатие ниже В7,5;

для однослойных конструкций легкий бетон класса по прочности на сжатие В2,5.

Рекомендуется принимать класс бетона по проч­ности на сжатие:

для железобетонных сжатых стержневых эле­ментов не ниже В15;

для сильнонагруженных железобетонных сжатых стержневых элементов (например, для колонн, воспринимающих значительные крановые нагрузки, и для колонн нижних этажей многоэтажных зда­ний) не ниже B25;

для тонкостенных железобетонных конструкций, а также для стен зданий и сооружений, возводимых в скользящей и переставной опалубках, не ниже В15.

Для бетонных сжатых элементов не рекомен­дуется применять бетон класса выше В30.

2.4 (2.8). Для замоноличивания стыков элемен­тов сборных железобетонных конструкций класс бетона следует устанавливать в зависимости от усло­вий работы соединяемых элементов, но принимать не ниже В7,5.

2.5 (2.9). Марки бетона по морозостойкости и водонепроницаемости бетонных и железобетонных конструкций в зависимости от режима их эксплуа­тации и значений расчетных зимних температур на­ружного воздуха в районе строительства должны приниматься:

для конструкций зданий и сооружений (кроме наружных стен отапливаемых зданий) не ниже указанных в табл. 4;

для наружных стен отапливаемых зданий не ниже указанных в табл. 5.

 

Таблица 4 (9)

 

Условия работы конструкций

Марка бетона, не ниже

 

 

расчетная зимняя

по морозостойкости

по водонепрони-цаемости

характеристика режима

температура наружного воздуха, °С

для конструкций (кроме наружных стен отапливаемых зданий) зданий и сооружений класса по степени ответственности

 

 

I

II

III

I

II

III

1. Попеременное замораживание и оттаивание:

а) в водонасыщенном состоянии

 

 

Ниже минус 40

 

 

F300

 

 

F200

 

 

F150

 

 

W6

 

 

W4

 

 

W2

(например, конструкции, рас­положенные в сезоннооттаи­вающем слое грунта в районах

Ниже минус 20

до минус 40 включ.

F200

F150

F100

W4

W2

Не норми­руется

вечной мерзлоты)

Ниже минус 5

до минус 20 включ.

F150

F100

F75

W2

Не нормируется

 

Минус 5 и выше

F100

F75

F50

Не нормируется

б) в условиях эпизодического во­донасыщения (например, надзем­ные конструкции, постоян­но

Ниже минус 40

F200

F150

F100

W4

W2

Не норми­руется

подвергающиеся атмосферным воздействиям)

Ниже минус 20

до минус 40 включ.

F100

F75

F50

W2

Не нормируется

 

Ниже минус 5

до минус 20 включ.

F75

F50

F35*

Не нормируется

 

Минус 5 и выше

F50

F35*

F25*

То же

 

в) в условиях воздушно-влажно­стного состояния при отсутствии эпизодического водонасыщения

Ниже минус 40

F150

F100

F75

W4

W2

Не норми­руется

(например, конструкции, пос­тоянно подвер­гающиеся воздей-

Ниже минус 20

до минус 40 включ.

F75

F50

F35*

Не нормируется

ствию окружающего воздуха, но защищен­ные от воздействия

Ниже минус 5

до минус 20 включ.

F50

F35*

F25*

То же

 

атмосфер­ных осадков)

Минус 5 и выше

F35*

F25*

F15**

"

 

2. Возможное эпизодическое воздей­ствие температуры ниже 0 °С:

а) в водонасыщенном состоянии

 

 

 

Ниже минус 40

 

 

 

F150

 

 

 

F100

 

 

 

F75

 

 

 

(например, конструкции, нахо­дящиеся в грунте или под водой)

Ниже минус 20

до минус 40 включ.

F75

F50

F35

"

 

 

Ниже минус 5

до минус 20 включ.

F50

F35*

F25*

"

 

 

Минус 5 и выше

F35*

F25*

Не норми­руется

"

 

б) в условиях воздушно-влажно-

Ниже минус 40

F75

F50

F35*

стного состояния (например, внутренние конструкции отапли-

Ниже минус 20

до минус 40 включ.

F50

F35*

F25*

 

ваемых зданий в периоды строительства и монтажа)

Ниже минус 5

до минус 20 включ.

F35*

F25*

F15**

"

 

 

Минус 5 и выше

F25*

F15**

Не норми­руется

"

 

_____________

* Для тяжелого и мелкозернистого бетонов марки по морозостойкости не нормируются.

** Для тяжелого, мелкозернистого и легкого бетонов марки по морозостойкости не нормируются.

 

Примечания: 1. Марки бетона по морозостойкости и водонепроницаемости для конструкций сооружений водоснабже­ния и канализации, а также для свай и свай-оболочек следует назначать согласно требованиям соответствующих нормативных документов.

2. Расчетные зимние температуры наружного воздуха принимаются согласно указаниям п. 1.8.

 

Таблица 5 (10)

 

Условия работы конструкций

Минимальная марка бетона по морозостойкости наружных стен отапливаемых зданий из бетонов

относительная влажность

расчетная зимняя температура

легкого, поризованного

тяжелого, мелкозернистого

внутреннего воздуха

наружного воздуха, °С

для зданий класса по степени ответственности

помещения jint, %

 

I

II

III

I

II

III

1. jint > 75

Ниже минус 40

F100

F75

F50

F200

F150

F100

 

Ниже минус 20

до минус 40 включ.

F75

F50

F35

F100

F75

F50

 

Ниже минус 5

до минус 20 включ.

F50

F35

F25

F75

F50

Не норми­руется

 

Минус 5 и выше

F35

F25

F15*

F50

Не нормируется

2. 60 < jint  £ 75

Ниже минус 40

F75

F50

F35

F100

F75

F50

 

Ниже минус 20

до минус 40 включ.

F50

F35

F25

F50

Не нормируется

 

Ниже минус 5

до минус 20 включ.

F35

F25

F15*

He нормируется

 

Минус 5 и выше

F25

F15*

He нормируется

 

3. jint £ 60

Ниже минус 40

F50

F35

F25

F75

F50

Не норми­руется

 

Ниже минус 20

до минус 40 включ.

F35

F25

F15*

He нормируется

 

Ниже минус 5

до минус 20 включ.

F25

F15*

He нормируется

 

 

Минус 5 и выше

F15*

Не нормируется

 

_____________

* Для легких бетонов марки по морозостойкости не нормируются.

 

Примечания: 1. При наличии паро- и гидроизоляции конструкций из тяжелых, мелкозернистых и легких бетонов их марки по морозостойкости, указанные в настоящей таблице, снижаются на одну ступень.

2. Расчетная зимняя температура наружного воздуха принимается согласно указаниям п. 1.8.

 

2.6 (2.10). Для замоноличивания стыков элемен­тов сборных конструкций, которые в процессе эксплуатации или монтажа могут подвергаться воз­действию отрицательных температур наружного воздуха, следует применять бетоны проектных марок по морозостойкости и водонепроницаемости не ни­же принятых для стыкуемых элементов.

2.7. Для легких бетонов марки по средней плот­ности назначаются в соответствии с табл. 6.

Нормативные и расчетные характеристики бетона

2.8 (2.11). Нормативными сопротивлениями бе­тона являются сопротивление осевому сжатию призм (призменная прочность) Rbn и сопротивле­ние осевому растяжению Rbtn.

Нормативные сопротивления бетона Rbn и Rbtn в зависимости от класса бетона В даны в табл. 7.

2.9 (2.11, 2.13). Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt определяются путем деления нормативных сопро­тивлений на коэффициенты надежности по бетону, принимаемые равными: при сжатии gbc = 1,3; при растяжении gbt = 1,5.

Расчетные сопротивления бетона Rb и Rbt снижа­ются (или повышаются) путем умножения на коэф­фициенты условий работы бетона gbi, учитывающие характер действия нагрузки, условия работы кон­струкции, способ ее изготовления, размеры сечения и т. п.

Расчетные сопротивления бетона для предельных состояний второй группы Rb,ser и Rbt,ser прини­маются равными нормативным сопротивлениям и вводятся в расчет с коэффициентом условий работы бетона gbi = 1,0.

 

Таблица 6

 

Класс легкого

Марки по средней плотности для

 

бетона по прочности на сжатие

керамзитобетона,  шунгизитобетона

шлакопемзобетона, шлакобетона

перлитобетона

бетона на природных пористых заполни­телях

аглопоритобетона

В2,5

D800-D1000

D100-D1400

D800-D900

D800-D1200

D1000-D1200

В3,5

D800-D1100

D1100-D1500

D800-D100

D900-D1300

D1100-D1300

B5

D800-D1200

D1200-D1600

D800-D1100

D1000-D1400

D1200-D1400

B7,5

D900-D1300

D1300-D1700

D900-D1200

D1100-D1500

D1300-D1500

B10

D1000-D1400

D1400-D1800

D1000-D1300

D1200-D1600

D1400-D1600

В12,5

D1000-D1400

D1400-D1800

D1000-D1400

D1200-D1600

D1400-D1600

В15

D1200-D1700

D1600-D1800

D1300-D1600

D1500-D1700

D1600-D1800

В20

D1300-D1800

D1700-D1900

D1600-D1800

D1700-D1900

B25

D1300-D1800

D1800-D1900

D1700-D1900

D1700-D1900

B27,5

D1400-D1800

D1900-D2000

D1800-D2000

D1800-D2000

B30

D1500-D1800

D1900-D2000

D1900-D2000

B35

D1600-D1900

B40

D1700-D1900

_____________

* Допускается применять при условии получения экономии цемента по сравнению с применением бетона класса B30 и неснижения других технико-экономических показателей конструкции.

 

Таблица 7 (12)

 

Вид сопротивления

Бетон

Нормативные сопротивления бетона Rbn и Rbtn и расчетные сопротивления для предельных состояний второй группы Rb,ser и Rbt,ser, МПа (кгс/см2), при классе бетона по прочности на сжатие

 

 

В2,5

В3,5

В5

В7,5

В10

В12,5

B15

B20

Сжатие осевое

Тяжелый,

1,9

2,7

3,5

5,5

7,5

9,5

11,0

15,0

(призменная прочность) Rbn и Rb,ser

мелкозернистый и легкий

(19,4)

(27,5)

(35,7)

(56,1)

(76,5)

(96,9)

(112)

(153)

Растяжение

Тяжелый,

0,29

0,39

0,55

0,70

0,85

1,00

1,15

1,40

осевое Rbtn и Rbt,ser

мелкозернистый1 и легкий на мел­ком плотном заполни­теле

(2,96)

(4,00)

(5,61)

(7,14)

(8,67)

(10,2)

(11,7)

(14,3)

 

Легкий на

0,29

0,39

0,55

0,70

0,85

1,00

1,10

1,20

 

мелком пористом заполнителе2

(2,96)

(4,00)

(5,61)

(7,14)

(8,67)

(10,2)

(11,2)

(12,2)

Сжатие осевое

Тяжелый,

18,5

22,0

25,5

29,0

32,0

36,0

39,5

43,0

(призменная прочность) Rbn и Rb,ser

мелкозернистый и легкий

(189)

(224)

(260)

(296)

(326)

(367)

(403)

(438)

Растяжение

Тяжелый,

1,60

1,80

1,95

2,10

2,20

2,30

2,40

2,50

осевое Rbtn и Rbt,ser

мелкозернистый1 и легкий на мел­ком плотном заполни­теле

(16,3)

(18,4)

(19,9)

(21,4)

(22,4)

(23,5)

(24,5)

(25,5)

 

Легкий на мел-

1,35

1,50

1,65

1,80

 

ком пористом заполнителе2

(13,8)

(15,3)

(16,8)

(18,4)

 

 

 

 

_____________

1 Для мелкозернистого бетона группы Б (см. п. 2.1) значения Rbtn и Rbt,ser уменьшают на 15 %.

2 Для керамзитоперлитобетона на вспученном перлитовом песке значения Rbtn и Rbt,ser уменьшают на 15 %.

Примечание. Для поризованного бетона значения Rbn и Rb,ser принимают такими же, как для легкого бетона, в значения Rbtn и Rbt,ser умножают на коэффициент 0,7.

 

Расчетные сопротивления бетона в зависимости от класса бетона по прочности на сжатие приведены (с округлением): для предельных состояний пер­вой группы в табл. 8, второй группы в табл. 7.

В расчетные сопротивления, приведенные в табл. 8, включен коэффициент условий работы gb2, учитывающий влияние длительности действия нагру­зок и условия нарастания прочности бетона во вре­мени; порядок использования в расчете коэффи­циентов gb2 приведен в п. 3.1.

Расчетные сопротивления бетона, приведенные в табл. 8, в соответствующих случаях следует умно­жать на коэффициенты условий работы бетона согласно табл. 9.

2.10 (2.14). Значения начального модуля упру­гости бетона Eb при сжатии и растяжении прини­маются по табл. 11.

Для бетонов, подвергающихся попеременному замораживанию и оттаиванию (см. поз. 1 табл. 4), значения Eb, указанные в табл. 11, следует умно­жать на коэффициент условий работы gb6, принимаемый по табл. 10.

2.11 (2.15). Коэффициент линейной температур­ной деформации abt при изменении температуры от минус 40 до плюс 50 °С в зависимости от вида бетона принимается равным:

для тяжелого, мелкозернистого бетонов и легко­го бетона на мелком плотном заполнителе 1·105 °С1;

для легкого бетона на мелком пористом заполни­теле 0,7·105 °С1;

для поризованного бетона 0,8·105 °С1.

2.12 (2.16). Начальный коэффициент поперечной деформации бетона v (коэффициент Пуассона) при­нимается равным 0,2 для всех видов бетона, а мо­дуль сдвига бетона G равным 0,4 соответствую­щих значений Eb, указанных в табл. 11.

2.13. Для определения массы железобетонной или бетонной конструкции плотность бетона принимается равной, кг/м3: для тяжелого бетона — 2400, мел­козернистого 2200, легкого и поризованного марке бетона по средней плотности D, умноженной: для бетонов класса В12,5 и выше на 1,05, для бе­тонов класса В10 и ниже 1 + w/100 (где w весо­вая влажность бетона при эксплуатации, %, опре­деленная согласно СНиП II-3-79**; допускается w принимать равной 10 %). При расчете конструк­ций в стадиях изготовления и транспортирования плотность легких и поризованных бетонов опреде­ляется с учетом отпускной объемной влажности w по формуле  где w = 15 и 20 % соответственно для легкого и поризованного бетонов класса В10 и ниже и w = 10 % для легких бетонов класса В12,5 и выше.

Плотность железобетона при содержании армату­ры 3 % и менее может приниматься превышающей плотность бетона на 100 кг/м3; при содержании арматуры свыше 3 % плотность определяется как сумма масс бетона и арматуры на единицу объема железобетонной конструкции. При этом масса 1 м длины арматурной стали принимается по прил. 4, а масса полосовой, угловой и фасонной стали по государственным стандартам. При определении мас­сы наружной ограждающей конструкции из легкого бетона класса В10 и ниже следует учитывать повы­шенную плотность фактурных слоев.

Для определения нагрузки от собственного веса конструкции удельный вес ее, кН/м3, допускает­ся принимать равным 0,01 плотности, кг/м3.

 


Таблица 8

 

 

Вид

 

Бетон

Коэф­фициент

Расчетные сопротивления бетона для предельных состояний первой группы Rb и Rbt, МПа (кгс/см2),

при классе бетона по прочности на сжатие

сопротив­ления

 

условий работы gb2

B2,5

B3,5

B5

B7,5

В10

B12,5

B15

В20

B25

В30

B35

B40

B45

B50

B55

B60

Сжатие осевое

Тяжелый,

0,9

1,3

1,9

2,5

4,0

5,4

6,7

7,7

10,5

13,0

15,5

17,5

20,0

22,5

25,0

27,0

29,5

(призменная

мелкозернистый

 

(13,3)

(19,4)

(25,5)

(40,8)

(55)

(68,5)

(78,5)

(107)

(133)

(158)

(178)

(204)

(230)

(255)

(275)

(300)

прочность) Rb

и легкий

1,0

1,5

2,1

2,8

4,5

6,0

7,5

8,5

11,5

14,5

17,0

19,5

22,0

25,0

27,5

30,0

33,0

 

 

 

(15,3)

(21,4)

(28,6)

(45,9)

(61,2)

(76,5)

(86,7)

(117)

(148)

(173)

(199)

(224)

(255)

(280)

(306)

(336)

 

 

1,1

1,6

2,3

3,1

4,9

6,6

8,2

9,4

12,5

16,0

19,0

21,5

24,0

27,5

30,5

33,0

36,5

 

 

 

(16,3)

(23,4)

(32,6)

(50)

(67,3)

(83,5)

(96)

(128)

(163)

(194)

(219)

(245)

(280)

(310)

(334)

(370)

Растяжение

Тяжелый,

0,9

0.18

0,23

0,33

0,43

0,51

0,59

0,67

0,80

0,95

1,10

1,15

1,25

1,30

1,40

1,45

1,50

осевое Rbt

мелкозернистый1

 

(1,84)

(2,34)

(3,33)

(4,39)

(5,20)

(6,01)

(6,83)

(8,16)

(9,7)

(11,2)

(11,7)

(12,7)

(13,3)

(14,3)

(14,8)

(15,3)

 

и легкий на мел-

1,0

0,20

0,26

0,37

0,48

0,57

0,66

0.75

0,90

1,05

1,20

1,30

1,40

1,45

1,55

1,60

1,65

 

ком плот­ном

 

(2,04)

(2,65)

(3,77)

(4,89)

(5,81)

(6,73)

(7,65)

(9,18)

(10,7)

(12,2)

(13,3)

(14,3)

(14,8)

(15,8)

(16,3)

(16,8)

 

заполнителе

1,1

0,22

0,29

0,41

0,53

0,63

0,73

0,82

1,00

1,15

1,30

1,45

1,55

1,60

1,70

1,75

1,80

 

 

 

(2,24)

(2,96)

(4,18)

(5,40)

(6,43)

(7,45)

(8,36)

(10,2)

(11,7)

(13,3)

(14,8)

(15,8)

(16,3)

(17,3)

(17,8)

(18,4)

 

Легкий на мел-

0,9

0,18

0,23

0,33

0,43

0,51

0,59

0,66

0,72

0,81

0,90

1,00

1,10

 

ком пористом

 

(1,84)

(2,34)

(3,33)

(4,39)

(5,20)

(6,01)

(6,73)

(7,34)

(8,26)

(9,18)

(10,2)

(11,2)

 

 

 

 

 

заполнителе2

1,0

0,20

0,26

0,37

0,48

0,57

0,66

0,74

0,80

0,90

1,00

1,10

1,20

 

 

 

(2,04)

(2,65)

(3,77)

(4,89)

(5,81)

(6,73)

(7,55)

(8,16)

(9,18)

(10,2)

(11,2)

(12,2)

 

 

 

 

 

 

1,1

0,22

0,29

0,41

0,53

0,63

0,73

0,81

0,90

1,00

1,10

1,2

1,30

 

 

 

(2,24)

(2,96)

(4,18)

(5,40)

(6,43)

(7,45)

(8,26)

(9,18)

(10,2)

(11,2)

(12,2)

(13,3)

 

 

 

 

_____________

1 Для мелкозернистого бетона группы Б (см. п. 2.1) значения Rbt уменьшают на 15 %.

2 Для керамзитоперлитобетона на вспученном перлитовом песке значения Rbt уменьшают на 15 %.

Примечания: 1. Для поризованного бетона значения gb2 принимают такими же, как для легкого бетона, а значения Rbt умножают на коэффициент 0,7.

2. Условия применения коэффициента условий работы gb2 приведены в п. 3.1.

3. Расчетные сопротивления бетона с коэффициентом условий работы gb2 = 1,0 приняты по табл. 13 СНиП 2.03.01-84.

 


 

Таблица 9 (15)

 

Факторы, обусловливающие

введение коэффициента

Коэффициент условий

работы бетона

условий работы

условное обозначение

численное значение

1. Бетонирование в верти­кальном положении (вы­сота слоя бетонирования более 1,5 м)

gb3

0,85*

2. Бетонирование монолитных столбов и железо­бетонных колонн с наи­большим размером сече­ния менее 30 см

gb5

0,85

3. Попеременное заморажи­вание и оттаивание

gb6

См. табл. 10

4. Эксплуатация не защи­щенных от солнечной ра­диации конструкций в климатическом подрайо­не IVA согласно СНиП 2.01.01-82

gb7

0,85

5. Бетонные конструкции

gb9

0,90

6. Бетонные конструкции из тяжелого бетона клас­са В35 и выше либо из легкого или мелкозер­нистого бетона класса В25 и выше

gb10

0,3 + w £ 1

(значение w см. п. 3.14)

7. Бетон для замоноличивания стыков сборных элементов при толщине шва менее 1/5 наимень­шего размера сечения эле­мента и менее 10 см

gb12

1,15

_____________

* Для элементов из поризованного бетона gb3 = 0,80.

Примечания: 1.  Коэффициенты условий работы бетона по поз. 35 должны учитываться при определении расчетных сопротивлений Rb и Rbt, а по остальным пози­циям только при определении Rb.

2. Коэффициенты условий работы бетона вводятся не­зависимо друг от друга, но при этом их произведение [включая gb2 (см. п. 3.1)] должно быть не менее 0,45.

АРМАТУРА

2.14 (2.19). В качестве ненапрягаемой арматуры железобетонных конструкций (кроме указанных в п. 2.15):

следует преимущественно применять:

а) стержневую арматуру периодического профи­ля классов А-III и Ат-IIIC;

б) обыкновенную арматурную проволоку перио­дического профиля класса Вр-I в сварных сетках и каркасах;

 

допускается применять:

 

в) стержневую арматуру периодического профи­ля класса А-II и гладкую класса А-I для поперечной монтажной и конструктивной арматуры, а также в качестве рабочей продольной, если другие виды арматуры не могут быть использованы;

г) обыкновенную арматурную проволоку класса Вр-I для вязаных хомутов балок высотой до 400 мм и колонн.

 

Таблица 10 (17)

 

 

Условия эксплуатации конструкции

 

Расчетная зимняя температура наружного воздуха,

Коэффициент условий работы бетона gb6 при попеременном замораживании и оттаивании

для бетона

 

°С

тяжелого и мелкозернис­того

легкого и поризованного

Попеременное замораживание

Ниже минус 40

0,70

0,80

и от­таивание:

Ниже минус 20

до минус 40 включ.

0,85

0,90

а) в водонасыщенном со­стоянии (см. поз. 1а табл.

Ниже минус 5

до минус 20 включ.

0,90

1,00

4)

Минус 5 и выше

0,95

1,00

б) в условиях эпизодичес-

Ниже минус 40

0,90

1,00

­кого водонасыщения (см. поз. 1б табл. 4)

Минус 40 и выше

1,00

1,00

 

Примечания: 1. Расчетная зимняя температура на­ружного воздуха принимается согласно п. 1.8.

2. При превышении марки бетона по морозостойкости по сравнению с требуемой согласно табл. 4 коэффициенты настоящей таблицы могут быть увеличены на 0,05 соот­ветственно каждой ступени превышения, однако не могут быть более единицы.

 

Арматуру классов A-III, Ат-IIIC, A-II и А-I реко­мендуется применять в виде сварных каркасов и сварных сеток.

При обосновании экономической целесообраз­ности допускается применять ненапрягаемую арма­туру классов A-IV, A-V и A-VI и их модификаций в качестве сжатой арматуры, а класса A-IV — в качестве растянутой. Кроме того, в качестве рас­тянутой арматуры допускается применять арматуру класса А-IIIв. Проектирование элементов с примене­нием арматуры перечисленных классов выполняет­ся в соответствии с Пособием по проектированию предварительно напряженных железобетонных кон­струкций из тяжелых и легких бетонов" (М., ЦИТП Госстроя СССР, 1986).

В качестве конструктивной арматуры железобе­тонных конструкций допускается также приме­нять обыкновенную гладкую проволоку класса В-I.

 

Примечания. 1. В настоящем Пособии использует­ся термин стержень" для обозначения арматуры любого диаметра, вида и профиля независимо от того, поставляет­ся она в прутках или мотках (бунтах).

2. В обозначение стержневой арматуры класса А-II спе­циального назначения добавляется буква с" Ас-II.

 


Таблица 11 (18)

 

Бетон

Начальные модули упругости бетона Eb · 103, МПа (кгс/см2), при классе бетона по прочности на сжатие

 

B2,5

B3,5

B5

B7,5

B10

B12,5

B15

B20

B25

B30

B35

B40

B45

B50

B55

B60

Тяжелый:

естественного твердения

 

 

9,5

(96,9)

 

13,0

(133)

 

16,0

(163)

 

18,0

(184)

 

21,0

(214)

 

23,0

(235)

 

27,0

(275)

 

30,0

(306)

 

32,5

(331)

 

34,5

(352)

 

36,0

(367)

 

37,5

(382)

 

39,0

(398)

 

39,5

(403)

 

40,0

(408)

подвергнутый тепловой обра­ботке при атмосферном дав­лении

8,5

(86,7)

11,5

(117)

14,5

(148)

16,0

(163)

19,0

(194)

20,5

(209)

24,0

(245)

27,0

(275)

29,0

(296)

31,0

(316)

32,5

(332)

34,0

(347)

35,0

(357)

35,5

(362)

36,0

(367)

Мелкозернистый групп:

А естественного твердения

 

 

7,0

(71,4)

 

10,0

(102)

 

13,5

(138)

 

15,5

(158)

 

17,5

(178)

 

19,5

(199)

 

22,0

(224)

 

24,0

(245)

 

26,0

(265)

 

27,5

(280)

 

28,5

(291)

 

 

 

 

подвергнутый тепловой об­работке при атмосферном давлении

6,5

(66,3)

9,0

(92)

12,5

(127)

14,0

(143)

15,5

(158)

17,0

(173)

20,0

(204)

21,5

(219)

23,0

(235)

24,0

(245)

24,5

(250)

Б естественного твердения

6,5

(66,3)

9,0

(91,8)

12,5

(127)

14,0

(143)

15,5

(158)

17,0

(173)

20,0

(204)

21,5

(219)

23,0

(235)

подвергнутый тепловой об­работке при атмосферном давлении

5,5

(56,1)

8,0

(81,6)

11,5

(117)

13,0

(133)

14,5

(148)

15,5

(158)

17,5

(178)

19,0

(194)

20,5

(209)

В автоклавного твердения

16,5

(168)

18,0

(184)

19,5

(199)

21,0

(214)

22,0

(224)

23,0

(235)

23,5

(240)

24,0

(245)

24,5

(250)

25,0

(255)

Легкий и поризованный марки по средней плотности D:

  800

 

 

4,0

(40,8)

 

 

4,5

(45,9)

 

 

5,0

(51,0)

 

 

5,5

(56,1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000

5,0

(51,0)

5,5

(56,1)

6,3

(64,2)

7,2

(73,4)

8,0

(81,6)

8,4

(85,7)

1200

6,0

(61,2)

6,7

(68,3)

7,6

(77,5)

8,7

(88,7)

9,5

(96,9)

10,0

(102)

10,5

(107)

 

 

 

 

 

 

 

 

 

1400

7,0

(71,4)

7,8

(79,5)

8,8

(89,7)

10,0

(102)

11,0

(112)

11,7

(119)

12,5

(127)

13,5

(138)

14,5

(148)

15,5

(158)

1600

9,0

(91,8)

10,0

(102)

11,5

(117)

12,5

(127)

13,2

(135)

14,0

(143)

15,5 (158)

16,5

(168)

17,5

(178)

18,0

(184)

1800

11,2

(114)

13,0

(133)

14,0

(143)

14,7

(150)

15,5

(158)

17,0

(173)

18,5

(189)

19,5

(199)

20,5

(209)

21,0

(214)

2000

14,5

(148)

16,0

(163)

17,0

(173)

18,0

(184)

19,5

(199)

21,0

(214)

22,0

(224)

23,0

(235)

23,5

(240)

 

Примечания: 1. Группы мелкозернистого бетона приведены в п. 2.1.

2. Для легкого и поризованного бетонов при промежуточных значениях марок по средней плотности начальные модули упругости принимают по линейной интерполяции.

3. Для легкого и поризованного бетонов значения Eb даны при эксплуатационной весовой влажности w, составляющей для бетона класса В12,5 и выше 5 %, класса B10 и ниже 10 %. Если для бетонов класса B10 и ниже весовая влажность конструкций w, определенная согласно СНиП II-3-79**, существенно превышает 10 %, значения Eb при необходимости можно несколько увеличить, определяя их по табл. 11 при условной марке по средней плотности, равной D (100 + w)/110 (где D принятая марка по средней плотности).

4. Для тяжелого бетона, подвергнутого автоклавной обработке, значения Eb, указанные в табл. 11 для бетона естественного твердения, следует умножать на коэффициент 0,75.

5. Для не защищенных от солнечной радиации конструкций, предназначенных для работы в климатическом подрайоне IVA согласно СНиП 2.01.01-82, значения Eb, указанные в табл. 11, следует умножать на коэффициент 0,85.

 

 

Таблица 12 (прил. 1)

 

 

 

 

 

Условия эксплуатации конструкции при нагрузке

 

 

 

 

статической

Динамической и многократно повторяющейся

Вид арматуры и документы, регламентирующие

Класс арматуры

Марка

стали

Диаметр арматуры,

 

в отапли-

На открытом воздухе и в неотапливаемых зданиях при расчетной температуре, °С

 

в отапли-

На открытом воздухе и в неотапливаемых зданиях при расчетной температуре, °С

ее качество

 

 

мм

ваемых зданиях

до минус

30 в ключ.

ниже

минус 30

до минус

40 включ.

ниже

минус 40

до минус

55 включ.

ниже

минус 55

до минус

70 включ.

ваемых зданиях

до минус

30 включ.

ниже

минус 30

до минус

40 включ.

ниже

минус 40

до минус

55 включ.

ниже

минус 55

до минус

70 включ.

Стержневая горячекатаная

А-I

Ст3сп3

6-40

+

+

+

+

+1

+

+

гладкая, ГОСТ 5781-82 и

 

Ст3пс3

6-40

+

+

+

+

+

ГОСТ 380-71

 

Ст3кп3

6-40

+

+

+

+

 

 

ВСт3сп2

6-40

+

+

+

+

+

+

+

+

+

+

 

 

ВСт3пс2

6-40

+

+

+

+

+

+

 

 

ВСт3кп2

6-40

+

+

+

+

 

 

ВСт3Гпс2

6-18

+

+

+

+

+1

+

+

+

+

+1

Стержневая горячекатаная

А-II

ВСт5сп2

10-40

+

+

+

+1

+1

+

+

+1

периодического профиля,

 

ВСт5пс2

10-16

+

+

+

+1

+

+

+1

ГОСТ 5781-82

 

 

18-40

+

+

+

+1

 

 

18Г2С

40-80

+

+

+

+

+1

+

+

+

+

+1

 

Ас-II

10ГТ

10-32

+

+

+

+

+

+

+

+

+

+

 

А-III

З5ГС

6-40

+

+

+

+1

+

+

+1

 

 

25Г2С

6-8

+

+

+

+

+

+

+

+

+

 

 

 

10-40

+

+

+

+

+1

+

+

+

+1

 

 

32Г2Рпс

6-22

+

+

+

+1

+

+

+1

Стержневая термомехани­чески упрочненная перио­дического профиля,

ГОСТ 10884-81

Ат-IIIС

БСт5пс; БСт5сп

10-22

+

+

+

+1

+

+

+1

Обыкновенная арматурная проволока периодического профиля, ГОСТ 6727-80

Вр-I

3-5

+

+

+

+

+

+

+

+

+

+

_____________

1 Допускается применять только в вязаных каркасах и сетках.

 

Примечания: 1. В таблице знак +" означает допускается, знак " не допускается.

2. Расчетная температура принимается согласно указаниям п. 1.8.

3. В данной таблице нагрузки следует относить к динамическим, если доля этих нагрузок при расчете конструкций по прочности превышает 0,1 статической нагрузки; к многократно повторяющимся нагрузки, при которых требуется расчет конструкций на выносливость.

 


 

Таблица 13 (прил. 2)

 

Характеристика

Расчетная температура, °С

закладных деталей

до минус 30 включ.

ниже минус 30

до минус 40 включ.

 

марка

стали по ГОСТ 380-71

толщина проката, мм

марка

стали по ГОСТ 380-71

толщина проката, мм

1. Рассчитываемые на усилия от нагрузок:

а) статических

 

 

ВСт3кп2

 

 

4-30

 

 

ВСт3пс6

 

 

4-25

б) динамических и много-

ВСт3пс6

4-10

ВСт3пс6

4-10

кратно повторяющихся

ВСт3Гпс5

11-30

ВСт3Гпс5

11-30

 

BCT3сп5

11-25

ВСт3сп5

11-25

2. Конструктивные (не рассчи-

БСт3кп2

4-10

БСт3кп2

4-10

тываемые на силовые воздействия)

ВСт3кп2

4-30

BCт3кп2

4-30

 

Примечания: 1. Расчетная температура принимается согласно указаниям п. 1.8.

2. При применении низколегированной стали, например, марок 10Г2С1, 09Г2С, 15ХСНД, а также при расчетной температуре ниже минус 40 °С выбор марки стали и электродов для закладных деталей следует производить как для стальных сварных кон­струкций в соответствии с требованиями СНиП II-23-81.

3. Расчетные сопротивления стали указанных марок принимаются согласно СНиП II-23-81.

 

Таблица 14 (19, 20)

 

Вид и класс арматуры

Нормативные сопротивления растяжению Rsn и расчетные сопротивления растяжению для предельных состояний второй группы Rs,ser,  

МПа (кгс/см2)

Вид и класс арматуры

Нормативные сопротивления растяжению Rsn и расчетные сопротивления растяжению для предельных состояний второй группы Rs,ser,  

МПа (кгс/см2)

Стержневая классов:

А-I

 

 

235 (2400)

Проволочная класса Вр-I диаметром, мм:

3

 

 

410 (4200)

А-II

295 (3000)

4

405 (4150)

А-П1 и Ат-IIIC

390 (4000)

5

395 (4050)

 

 

Таблица 15 (22, 23)

 

 

Расчетные сопротивления арматуры для предельных сопротивлений первой группы, МПа (кгс/см2)

Вид и класс арматуры

растяжению

сжатию Rsc

 

продольной Rs

поперечной (хомутов и отогнутых стержней) Rsw

 

Стержневая классов:

А-I

 

225 (2300)

 

175 (1800)

 

225 (2300)

А-II

280 (2850)

225 (2300)

280(2850)

А-III диаметром, мм:

6-8

 

355 (3600)

 

285 (2900) *

 

355 (3600)

10-40

365 (3750)

290 (3000) *

365 (3750)

Ат-IIIC

365 (3750)

290 (3000) *

365 (3750)

Проволочная класса Вр-II диаметром, мм:

3

 

 

375 (3850)

 

 

270 (2750); 300 (3050) **

 

 

375 (3850)

4

365 (3750)

265 (2700); 295 (3000) **

365 (3750)

5

360 (3700)

260 (2650); 290 (2950) **

360 (3700)

_____________

* В сварных каркасах для хомутов из арматуры классов А-III и Ат-IIIC, диаметр которых менее 1/3 диаметра продольных стержней, значения Rsw принимаются равными 255 МПа (2600 кгс/см2).

** Для случая применения в вязаных каркасах.

 

2.15 (2.20). В конструкциях с ненапрягаемой арматурой, находящихся под давлением газов или жидкостей:

 

следует преимущественно применять

 

а) стержневую арматуру классов А-II и А-I;

 

допускается применять:

 

б) стержневую арматуру классов А-III и Ат-IIIC;

в) арматурную проволоку класса Вр-I.

2.16 (2.23). При выборе вида и марок стали для арматуры, устанавливаемой по расчету, а также про­катных сталей для закладных деталей должны учи­тываться температурные условия эксплуатации конструкций и характер их нагружения согласно табл. 12 и 13.

В климатических зонах с расчетной зимней тем­пературой ниже минус 40 °С при проведении строи­тельно-монтажных работ в холодное время года несущая способность в стадии возведения конструк­ций с арматурой, допускаемой к применению толь­ко в отапливаемых зданиях, должна быть обес­печена исходя из расчетного сопротивления армату­ры с понижающим коэффициентом 0,7 и расчетной нагрузки с коэффициентом надёжности по нагрузке gf =1,0.

2.17 (2.24). Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций должна применяться горячекатаная ар­матурная сталь класса Ас-II марки 10ГТ и класса А-I марок ВСт3сп2 и ВСт3пс2.

В случае, если возможен монтаж конструкций при расчетной зимней температуре ниже минус 40 °С, для монтажных петель не допускается приме­нять сталь марки ВСт3пс2.

Нормативные и расчетные характеристики арматуры

2.18 (2.25). За нормативные сопротивления арма­туры Rsn принимаются наименьшие контролиру­емые значения:

для стержневой арматуры физического предела текучести;

для обыкновенной арматурной проволоки на­пряжения, равного 0,75 временного сопротивления разрыву.

Нормативные сопротивления Rsn для основ­ных видов ненапрягаемой арматуры приведены в табл. 14.

2.19 (2.26). Расчетные сопротивления арматуры растяжению и сжатию соответственно Rs и Rsc для предельных состояний первой группы определя­ются путем деления нормативных сопротивлений на коэффициенты надежности по арматуре gs принимаемые равными:

 

а) для стержневой арматуры классов:

 А-I и А-II ........................................................ 1,05

 Ат-IIIC и А-III диаметром 10-40 мм .............1,07

 А-III диаметром 6-8 мм .................................1,10

б) для проволочной арматуры класса Вр-I ..... 1,10

 

Расчетные сопротивления арматуры растяжению для предельных состояний второй группы прини­маются равными нормативным сопротивлениям.

Расчетные сопротивления арматуры растяжению и сжатию, используемые при расчете по предельным состояниям первой группы, приведены в табл. 15, а при расчете по предельным состояниям второй группы в табл. 14.

2.20 (2.28). Расчетные сопротивления поперечной арматуры (хомутов и отогнутых стержней) Rsw снижаются по сравнению с Rs путем умножения на коэффициенты условий работы gs1 и gs2:

а) независимо от вида и класса арматурына коэффициент gs1 = 0,8, учитывающий неравно­мерность распределения напряжений в арматуре по длине рассматриваемого сечения;

б) для стержневой арматуры классов А-III и Ат-IIIC диаметром менее 1/3 диаметра продольных стержней и для проволочной арматуры класса Вр-I в сварных каркасах на коэффициент gs2 = 0,9, учитывающий возможность хрупкого разрушения сварного соединения.

Расчетные сопротивления Rsw с учетом указан­ных коэффициентов условий работы gs1 и gs2 приведены в табл. 15.

Кроме того, при расположении рассматриваемого сечения в зоне анкеровки арматуры расчетные со­противления Rs и Rsc умножаются на коэффициент условий работы gs5, учитывающий неполную анкеровку арматуры н определяемый согласно п. 3.44.

Для элементов из легкого бетона класса В7,5 и ниже расчетные сопротивления Rsw поперечной арматуры классов А-I и Вр-I умножаются на коэф­фициент условий работы gs7 = 0,8.

2.21 (2.30). Значения модуля упругости армату­ры Еs принимаются равными для арматуры классов:

 

А-I и А-II ................. 210 000 МПа (2 100 000 кгс/см2)

А-III и Ат-IIIС ......... 200 000        (2 000 000            )

Вр-I ......................... 170 000        (1 700 000            )

3. РАСЧЕТ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ

3.1. Для учета влияния длительности действия нагрузок на прочность бетона расчет бетонных и железобетонных элементов по прочности в общем случае производится:

а) на действие постоянных, длительных и кратковременных нагрузок, кроме нагрузок не­продолжительного действия (ветровых, крановых, от транспортных средств, возникающих при изго­товлении, транспортировании и возведении, и т. п.), а также на действие особых нагрузок, вызванных деформациями просадочных, набухающих, вечномерзлых и подобных грунтов; в этом случае рас­четные сопротивления бетона сжатию и растяжению соответственно Rb и Rbt принимаются по табл. 8 gb2 = 0,9:

б) на действие всех нагрузок, включая нагрузки непродолжительного действия; в этом случае рас­четные сопротивления бетона Rb и Rbt принима­ются по табл. 8 при gb2 = 1,1*.

Если конструкция эксплуатируется в условиях, благоприятных для нарастания прочности бетона [твердение под водой, во влажном грунте или при влажности окружающего воздуха свыше 75 % (см. п. 1.8)], расчет по случаю а" производится при gb2 = 1,0.

 

* Если при учете особых нагрузок, согласно указаниям соответствующих норм, вводится дополнительный коэф­фициент условий работы (например, при учете сейсмичес­ких нагрузок), принимается gb2 = 1,0.

 

Условие прочности должно удовлетворяться при расчете как по случаю а", так и по случаю б".

При отсутствии нагрузок непродолжительного действия, а также аварийных расчет по прочности производится только по случаю а".

При наличии нагрузок непродолжительного действия или аварийных расчет производится только по случаю б", если выполняется условие

 

                                                   (1)

 

где FI усилие (момент МI поперечная сила QI или продольная сила NI) от нагру­зок, используемых при расчете по слу­чаю а"; при этом в расчете сечений, нормальных к продольной оси внецентренно нагруженных элементов, мо­мент МI принимается относительно оси, проходящей через наиболее растянутый (или менее сжатый) стержень арма­туры, а для бетонных элементов относительно растянутой или наименее сжатой грани;

FII усилие от нагрузок, используемых при расчете по случаю б".

Допускается производить расчет только по случаю б" и при невыполнении условия (1), при­нимая расчетные сопротивления бетона Rb и Rbt, (при gb2 = 1,0)  с коэффициентом  gbl = 0,9 FII/FI £ 1,1.

Для внецентренно сжатых элементов, рассчиты­ваемых по недеформированной схеме, значения FI и FII можно определять без учета прогиба эле­мента.

Для конструкций, эксплуатируемых в условиях, благоприятных для нарастания прочности бетона, условие (1) приобретает вид FI < 0,9 FII, а коэф­фициент gbl = FII/FI.

РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.2 (3.1). Расчет по прочности бетонных элемен­тов конструкций должен производиться для сече­ний, нормальных к их продольной оси. В зависи­мости от условий работы элементов они рассчиты­ваются без учета, а также с учетом сопротивления бетона растянутой зоны.

Без учета сопротивления бетона растянутой зоны производится расчет внецентренно сжатых эле­ментов, указанных в п. 1.7а, принимая, что дости­жение предельного состояния характеризуется разрушением сжатого бетона.

С учетом сопротивления бетона растянутой зоны производится расчет элементов, указанных в п. 1.7б, а также элементов, в которых не допускаются тре­щины по условиям эксплуатации конструкций (элементов,  подвергающихся давлению воды, карнизов, парапетов и др.). При этом принимается, что достижение предельного состояния характери­зуется разрушением бетона растянутой зоны (появлением трещин).

В случае, когда возможно образование наклон­ных трещин (например, элементы двутаврового и таврового сечений при наличии поперечных сил), должен производиться расчет бетонных элементов из условия (13).

Кроме того, должен производиться расчет эле­ментов на местное сжатие (смятие) согласно п. 3.93.

Внецентренно сжатые элементы

3.3 (3.2, 1.21). При расчете внецентренно сжатых бетонных элементов должен приниматься во внима­ние случайный эксцентриситет продольного усилия еа, обусловленный не учтенными в расчете факторами. Эксцентриситет еа в любом случае принима­ется не менее:

1/600 длины элемента или расстояния между его сечениями, закрепленными от смещения;

1/30 высоты сечения;

10 мм (для сборных элементов при отсутствии других экспериментально обоснованных значений еа).

Для элементов статически неопределимых кон­струкций (например, защемленных по концам стен или столбов) значение эксцентриситета продольной силы относительно центра тяжести приведенного сечения е0 принимается равным значению эксцен­триситета, полученному из статического расчета конструкции, но не менее еа.

В элементах статически определимых конструк­ций эксцентриситет е0 находится как сумма экс­центриситетов определяемого из статического расчета конструкции и случайного.

3.4 (3.3). При гибкости элементов l0/i > 14 (для прямоугольных сечений при l0/h > 4) необходимо учитывать влияние на их несущую способность прогибов в плоскости эксцентриситета продольного усилия и в нормальной к ней плоскости путем умножения значений e0 на коэффициент h (см. п.3.7). В случае расчета из плоскости эксцентриситета продольного усилия значение е0 принимается равным значению случайного эксцентриситета.

Применение внецентренно сжатых бетонных эле­ментов (за исключением случаев, предусмотренных в п. 1.7б) не допускается при эксцентриситетах приложения продольной силы с учетом прогибов е0 h, превышающих:

 

а) в зависимости от сочетания нагрузок:

    при основном сочетании ................................... 0,9 у

         особом                      ................................... 0,95 у

б) в зависимости от класса бетона:

    при классе В10 и выше ..................................... у 10

                     В7,5 и ниже ..................................... у 20

 

(здесь у расстояние от центра тяжести сечения до наиболее сжатого волокна бетона, мм).

3.5 (3.4). Во внецентренно сжатых бетонных эле­ментах в случаях, указанных в п. 5.122, необходимо предусматривать конструктивную арматуру.

3.6 (3.5). Расчет внецентренно сжатых бетонных элементов должен производиться без учета растя­нутого бетона из условия

 

                                                     (2)

 

где Аb площадь сжатой зоны бетона, опреде­ляемая из условия, что ее центр тяжести совпадает с точкой приложения равно­действующей внешних сил (черт. 1).

 

 

Черт. 1. Схема усилий к эпюра напряжении в поперечном

сечении внецентренно сжатого бетонного элемента без учета

сопротивления бетона растянутой зоны

 

1 центр тяжести площади сжатой зоны; 2 то же, пло­щади всего сечения

 

Для элементов прямоугольного сечения Аb опре­деляется по формуле

 

                                    (3)

 

Внецентренно сжатые бетонные элементы, в кото­рых появление трещин не допускается по условиям эксплуатации (см. п. 3.2), независимо от расчета из условия (2) должны быть проверены с учетом сопротивления бетона растянутой зоны из условия

 

                                                (4)

 

Для элементов прямоугольного сечения условие (4) имеет вид

 

                                           (5)

 

Расчет внецентренно сжатых элементов, указан­ных в п. 1.7б, должен производиться из условия (2) или (4).

В формулах (3) (5):

h коэффициент, определяемый по формуле (8);

r расстояние от центра тяжести сечения до ядровой точки, наиболее удаленной от растянутой зоны, определяемое по фор­муле

 

                                         (6)

 но принимается не менее 0,7 и не более 1,0;

sb максимальное напряжение сжатия, вычис­ляемое как для упругого тела;

Wpl момент сопротивления сечения для край­него растянутого волокна с учетом не­упругих деформаций растянутого бетона, определяемый в предположении отсутст­вия продольной силы по формуле

 

                                       (7)

 

где Ib0 момент инерции площади сечения сжа­той зоны бетона относительно нулевой линии;

Sb0 статический момент площади сечения растянутой зоны бетона относительно нулевой линии;

h х расстояние от нулевой линии до растя­нутой грани, равное:

 

 

Ab1 площадь сжатой зоны бетона, допол­ненная в растянутой зоне прямоуголь­ником шириной b, равной ширине сечения по нулевой линии, и высотой h х (черт. 2);

Sb1 статический момент площади Аb1 отно­сительно растянутой грани.

 

 

Черт. 2. К определению Ab1

 

Допускается значение Wpl определять по фор­муле

 

 

где  g см. табл. 29.

3.7 (3.6). Значение коэффициента h, учитываю­щего влияние прогиба на значение эксцентриситета продольного усилия e0, следует определять по формуле

 

                                                  (8)

 

где Ncr условная критическая сипа, определяе­мая по формуле

 

                                             (9)

 

(здесь I момент инерции бетонного сечения).

Для элементов прямоугольного сечения формула (9) имеет вид

 

                        (9a)

 

В формулах (9) и (9а):

jl коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента в предельном состоя­нии, равный:

 

                                            (10)

 

но не более 1 + b,

здесь b коэффициент, принимаемый по табл. 16;

M1 момент относительно растянутой или наименее сжатой грани сечения от действия постоянных, длительных и кратковременных нагрузок;

M1l то же, от действия постоянных и дли­тельных нагрузок;

l0 определяется по табл. 17,

de коэффициент, принимаемый равным e0/h, но не менее

 

 

(здесь Rb в МПа).

 

Примечание. При расчете сечения по случаям а" и б" (см. п. 3.1) допускается значение de,min определять один раз, принимая значение Rb при gb2 = 1,0.

 

Таблица 16 (30)

 

Бетон

Коэффициент b в формуле (10)

1. Тяжелый

1,0

2. Мелкозернистый групп:

А

 

1,3

Б

1,5

В

1,0

3. Легкий:

при искусственных крупных запол­нителях и мелком заполнителе:

плотном

 

 

 

1,0

пористом

1,5

при естественных крупных запол­нителях

2,5

4. Поризованный

2,0

 

Примечание. Группы мелкозернистого бетона приведены в п. 2.1.

 

Таблица 17 (31)

 

Характер опирания

стен и столбов

Расчетная длина l0 внецентренно сжатых

бетонных элементов

1. С опорами вверху и внизу:

а) при шарнирах на двух концах независимо от величины смеще­ния опор

 

Н

б) при защемлении одного из концов и возможном смещении опор для зданий:

многопролетных

 

 

1,25 Н

однопролетных

1,50 Н

2. Свободно стоящие

2,00 Н

 

Обозначение, принятое в табл. 17: Н высота столба (стены) в пределах этажа за вычетом толщины плиты пере­крытия или высота свободно стоящей конструкции.

 

3.8. Расчет с учетом прогиба внецентренно сжа­тых бетонных элементов прямоугольного сечения из тяжелого бетона класса не выше В20 допускается производить с помощью графика (черт. 3). При этом должно выполняться условие

 

 

где an определяется по графику (черт. 3) в зависимости от значений е0/h и l = l0/h.

 

 

Условные обозначения:

  при М1l /M1 = 1,0;

 ------------ пpи M1l /M1 = 0,5,

 

Черт. 3. График несущей способности внецентренно сжатых

бетонных элементов

Изгибаемые элементы

3.9 (3.8). Расчет изгибаемых бетонных элементов должен производиться из условия

 

                                                (11)

 

где Wpl определяется по формуле (7); для элементов  прямоугольного сечения Wpl принимается равным:

 

                                                    (12)

 

Кроме того, для элементов таврового и двутав­рового сечений должно выполняться условие

 

                                        (13)

 

где txy касательные напряжения, определяемые как для упругого материала на уровне центра тяжести сечения.

Примеры расчета

Пример 1. Дано: межквартирная бетонная панель стены толщиной h = 200 мм, высотой Н = 2,7м, изготовленная вертикально (в кассете) из керамзитобетона на кварцевом песке-класса В15, марки по средней плотности D1600 (Еb = 14 000 МПа); полная нагрузка на 1 м стены N = 900 кН, в том числе постоянная и длительная нагрузки Nl = = 540 кН; нагрузки непродолжительного действия отсутствуют.

Требуется проверить прочность панели стены.

Расчет производим согласно п. 3.6 на действие продольной силы N = 900 кН, приложенной со случайным эксцентриситетом еа, определяемым согласно п. 3.3.

Поскольку  и  случайный эксцентриситет принимаем равным 10 мм, т. е. е0 = 10 мм. Закрепление панели сверху и снизу принимаем шарнирным, следовательно, расчетная длина l0, согласно табл. 17, равна l0 = Н = 2,7 м.

Так как гибкость панели  расчет производим с учетом прогиба согласно п. 3.7.

По формуле (10) определим коэффициент jl, принимая b = 1,0 (см. табл. 16). Поскольку экс­центриситет продольной силы не зависит от характера нагрузок, здесь можно принять 

тогда

Поскольку нагрузки непродолжительного дей­ствия отсутствуют, расчетное сопротивление бетона Rb, согласно п. 3.1, принимаем с учетом коэффи­циента gb2 = 0,90, т.е. Rb = 7,7 МПа, а учитывая, согласно табл. 9, коэффициенты условий работы gb3 = 0,85 и gb9 = 0,90, получим Rb = 7,7·0,85·0,90 = 5,89 МПа.

Так как

принимаем de = de,min = 0,306.

Критическую силу Ncr определим по формуле (9а), принимая площадь сечения А для 1 м длины стены, т. е. А = 200 Х 1000 = 200 000 мм2:

 

 

отсюда

 

 

Проверим условие (2), используя формулу (3):

 

 

т. е. прочность панели обеспечена.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.10 (3.9). Расчет по прочности железобетонных элементов должен производиться для сечений, нормальных к их продольной оси, а также для наклонных к ней сечений наиболее опасного направ­ления. При наличии крутящих моментов следует проверить прочность пространственных сечений, ограниченных в растянутой зоне спиральной тре­щиной наиболее опасного из возможных направле­ний. Кроме того, следует производить расчет эле­ментов на местное действие нагрузки (смятие, продавливание, отрыв).

Изгибаемые элементы

РАСЧЕТ СЕЧЕНИЙ,

НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

3.11 (3.11). Расчет сечений, нормальных к про­дольной оси элемента, когда изгибающий момент действует в плоскости оси симметрии сечения и арматура сосредоточена у перпендикулярных ука­занной плоскости граней элемента, следует произ­водить согласно пп. 3.15—3.23 в зависимости от соотношения между значением относительной высоты сжатой зоны бетона x = x/h0, определяе­мой из соответствующих условий равновесия, и значением относительной высоты сжатой зоны бетона xR (см. п. 3.14), при котором предельное состояние элемента наступает одновременно с достижением в растянутой арматуре напряжения, равного расчетному сопротивлению Rs.

3.12 (3.18). Расчет изгибаемых элементов коль­цевого сечения при соотношении внутреннего и наружного радиусов r1/r2 ³ 0,5 с арматурой, равномерно распределенной по длине окружности (при числе продольных стержней не менее 6), должен производиться как для внецентренно сжа­тых элементов согласно пп. 3.69 и 3.70, принимая значение продольной силы N = 0 и подставляя вместо Ne0 значение изгибающего момента М.

3.13. Расчет нормальных сечений, не оговоренных в пп. 3.11, 3.12 и 3.24, производится по формулам общего случая расчеты нормального сечения согласно п. 3.76, принимая в формуле (154) N = 0 и заме­няя в условии (153) значение  величиной  проекцией изгибающего момента на плоскость, перпендикулярную прямой, ограничивающей сжа­тую зону. Если ось симметрии сечения не совпадает с плоскостью действия момента или вовсе отсут­ствует, положение границы сжатой зоны должно обеспечить выполнение дополнительного условия параллельности плоскости действия моментов внеш­них и внутренних сил.

3.14 (3.12). Значение xR определяется по фор­муле

 

                                            (14)

 

где w характеристика сжатой зоны бетона, определяемая по формуле

 

                                        (15)

 

здесь a коэффициент, принимаемый равным для бетона:

 

тяжелого ................................................. 0,85

мелкозернистого (см. п. 2.1) групп:

А ....................................................... 0,80

Б и В.................................................. 0,75

легкого и поризованного ........................0,80

 

ssc,u = 500 МПа при использовании коэффи­циента условий работы бетона gb2 = 0,9 (см. п. 3.1);

ssc,u = 400 МПа при использовании коэффи­циента gb2 =1,0 или gb2  = 1,1;

Rs, Rb в МПа.

Значения w и xR приведены для элементов из тяжелого бетона в табл. 18, из мелкозерни­стого группы А, легкого и поризованного бетоновв табл. 19.

 


Таблица 18

 

Коэффициент условий

 

Класс растянутой

 

Обозначение

Значения w, xR, aR и yс для элементов из тяжелого бетона классов

работы бетона gb2

арматуры

 

B12,5

B15

B20

B25

B30

B35

B40

B45

B50

B55

B60

0,9

Любой

w

0,796

0,788

0,766

0,746

0,726

0,710

0,690

0,670

0,650

0,634

0,614

 

А-III (Æ 1040) и

xR

0,662

0,652

0,627

0,604

0,582

0,564

0,542

0,521

0,500

0,484

0,464

 

Bp-I (Æ 4; 5)

aR

0,443

0,440

0,430

0,422

0,413

0,405

0,395

0,381

0,376

0,367

0,355

 

 

yс

4,96

4,82

4,51

4,26

4,03

3,86

3,68

3,50

3,36

3,23

3,09

 

A-II

xR

0,689

0,680

0,650

0,632

0,610

0,592

0,571

0,550

0,531

0,512

0,490

 

 

aR

0,452

0,449

0,439

0,432

0,424

0,417

0,408

0,399

0,390

0,381

0,370

 

 

yс

6,46

6,29

5,88

5,55

5,25

5,04

4,79

4,57

4,38

4,22

4,03

 

A-I

xR

0,708

0,698

0,674

0,652

0,630

0,612

0,591

0,570

0,551

0,533

0,510

 

 

aR

0,457

0,455

0,447

0,439

0,432

0,425

0,416

0,407

0,399

0,391

0,380

 

 

yс

8,04

7,82

7,32

6,91

6,54

6,27

5,96

5,68

5,46

5,25

5,01

1,0

Любой

w

0,790

0,782

0,758

0,734

0,714

0,694

0,674

0,650

0,630

0,610

0,586

 

A-III (Æ 1040) и

xR

0,628

0,619

0,591

0,563

0,541

0,519

0,498

0,473

0,453

0,434

0,411

 

Bp-I (Æ 4,5)

aR

0,431

0,427

0,416

0,405

0,395

0,384

0,374

0,361

0,350

0,340

0,327

 

 

yс

3,89

3,79

3,52

3,29

3,12

2,97

2,83

2,68

2,56

2,46

2,35

 

A-II

xR

0,660

0,650

0,623

0,593

0,573

0,551

0,530

0,505

0,485

0,465

0,442

 

 

aR

0,442

0,439

0,429

0,417

0,409

0,399

0,390

0,378

0,367

0,357

0,344

 

 

yс

5,07

4,94

4,60

4,29

4,07

3,87

3,69

3,49

3,34

3,21

3,06

 

A-I

xR

0,682

0,673

0,645

0,618

0,596

0,575

0,553

0,528

0,508

0,488

0,464

 

 

aR

0,449

0,447

0,437

0,427

0,419

0,410

0,400

0,389

0,379

0,369

0,356

 

 

yс

6,31

6,15

5,72

5,34

5,07

4,82

4,59

4,35

4,16

3,99

3,80

1,1

Любой

w

0,784

0,775

0,750

0,722

0,698

0,678

0,653

0,630

0,606

0,586

0,558

 

А-III (Æ 1040) и

xR

0,621

0,610

0,581

0,550

0,523

0,502

0,481

0,453

0,429

0,411

0,385

 

Bp-I (Æ 4; 5)

aR

0,428

0,424

0,412

0,399

0,386

0,376

0,365

0,351

0,346

0,327

0,312

 

 

yс

3,81

3,71

3,44

3,19

3,00

2,86

2,73

2,56

2,52

2,35

2,23

 

А-II

xR

0,650

0,642

0,613

0,582

0,556

0,534

0,514

0,485

0,477

0,442

0,417

 

 

aR

0,439

0,436

0,425

0,413

0,401

0,391

0,382

0,361

0,363

0,344

0,330

 

 

yс

4,97

4,84

4,49

4,16

3,91

3,72

3,53

3,34

3,29

3,06

2,91

 

A-I

xR

0,675

0,665

0,636

0,605

0,579

0,558

0,537

0,509

0,500

0,464

0,439

 

 

aR

0,447

0,444

0,434

0,422

0,411

0,402

0,393

0,379

0,375

0,356

0,343

 

 

yс

6,19

6,02

5,59

5,17

4,86

4,63

4,42

4,16

4,09

3,80

3,62

 

 

Примечание. Значения w, xR, aR и yc, приведенные в табл. 18, вычислены без учета коэффициентов gbi по табл. 9.

 

Таблица 19

 

Коэффи­циент условий

Класс растяну­той арматуры

 

Обозначение

Значения w, xR, aR и yс для элементов из мелкозернистого бетона группы А,

легкого и поризованного бетонов классов

работы бетона gb2  

 

 

B5

B7,5

B10

В12,5

B15

B20

B25

В30

B35

В40

0,9

Любой

w

0,780

0,768

0,757

0,746

0,738

0,716

0,696

0,676

0,660

0,640

 

А-III (Æ 1040)

xR

0,643

0,629

0,617

0,604

0,595

0,571

0,551

0.528

0,510

0,490

 

и Вр-I (Æ 4; 5)

aR

0,436

0,431

0,427

0,422

0,418

0,408

0,399

0,388

0,380

0,370

 

 

yс

4,71

4,54

4,39

4,26

4,16

3,92

3,75

3,55

3,42

3,28

 

A-II

xR

0,671

0,657

0,644

0,632

0,623

0,599

0,577

0,556

0,539

0,519

 

 

aR

0,446

0,441

0,437

0,432

0,429

0,420

0,411

0,401

0,394

0,384

 

 

yс

6,14

5,92

5,73

5,55

5,43

5,12

4,86

4,63

4,46

4,27

 

A-I

xR

0,690

0,676

0,664

0,652

0,643

0,619

0,597

0,576

0,559

0,539

 

 

aR

0,452

0,448

0,444

0,439

0,436

0,427

0,419

0,410

0,403

0,394

 

 

yс

7,64

7,36

7,13

6,91

6,75

6,37

6,05

5,76

5,56

5,31

1,1

Любой

w

0,774

0,761

0,747

0,734

0,725

0,700

0,672

0,648

0,628

0,608

 

A-III (Æ 1040),

xR

0,609

0,594

0,578

0,563

0,553

0,526

0,496

0,471

0,451

0,432

 

Вр-I (Æ 4; 5)

aR

0,424

0,418

0,411

0,405

0,400

0,388

0,373

0,360

0,349

0,339

 

 

yс

3,70

3,56

3,42

3,29

3,22

3,01

2,82

2,67

2,55

2,45

 

А-II

xR

0,641

0,626

0,610

0,595

0,585

0,558

0,528

0,503

0,482

0,463

 

 

aR

0,436

0,430

0,424

0,418

0,414

0,402

0,389

0,377

0,366

0,356

 

 

yс

4,82

4,64

4,45

4,29

4,19

3,67

3,48

3,30

3,33

3,19

 

A-I

xR

0,663

0,648

0,633

0,618

0,608

0,581

0,551

0426

0,506

0,486

 

 

aR

0,443

0,438

0,433

0,427

0,423

0,412

0,399

0,388

0,378

0,368

 

 

yс

6,00

5,71

5,54

5,34

5,21

4,89

4,57

4,33

4,14

3,97

 

 

Примечание. Значения w, xR, aR и yc, приведенные в табл. 19, вычислены без учета коэффициентов gbi по табл. 9.


ПРЯМОУГОЛЬНЫЕ СЕЧЕНИЯ

3.15. Расчет прямоугольных сечений с арматурой, сосредоточенной у сжатой и растянутой граней эле­мента (черт. 4), производится следующим образом в зависимости от высоты сжатой зоны

 

                                      (16)

 

а) при   из условия

                              (17)

 

б) при x > xR из условия

 

                            (18)

 

где aR = xR (1 0,5 xR).

При этом расчетную несущую способность сече­ния можно несколько увеличить путем замены в условии (18) значения aR на 0,8aR + 0,2am, где при x £ 1 am = x (1 0,5x) или по табл. 20. Зна­чения xR и aR определяются по табл. 18 и 19. Если х £ 0, прочность проверяется из условия

 

                                     (19)

 

Примечание. Если высота сжатой зоны, опре­деленная с учетом половины сжатой арматуры,  расчетную несущую способность сечения можно несколько увеличить, производя рас­чет по формулам (16) и (17) без учета сжатой арматуры

 

 

Черт. 4. Схема усилий в поперечном прямоугольном сече­нии

изгибаемого железобетонного элемента

 

3.16. Изгибаемые элементы рекомендуется про­ектировать так, чтобы обеспечить выполнение условия x < xR. Невыполнение этого условия можно допустить лишь в случае, когда площадь сечения растянутой арматуры определена из рас­чета по предельным состояниям второй группы или принята по конструктивным соображениям.

3.17. Проверка прочности прямоугольных сече­ний с одиночной арматурой производится:

при х < xR h0 из условия

 

                               (20)

 

где высота сжатой зоны равна

при х ³ xR h0 из условия

 

                                            (21)

 

при этом расчетную несущую способность сечения можно несколько увеличить, если использовать рекомендации п. 3.15б [xR, aR см. формулу (14) или табл. 18 и 19].

3.18. Подбор продольной арматуры производится следующим образом. Вычисляется значение

 

                                                (22)

 

Если am £ aR (см. табл. 18 и 19), сжатая арма­тура по расчету не требуется.

При отсутствии сжатой арматуры площадь сече­ния растянутой арматуры определяется по формуле

 

                                                (23)

 

где z определяется по табл. 20 в зависимости от значения am.

Если am > aR, то требуется увеличить сечение или повысить марку бетона, или установить сжатую арматуру согласно п. 3.19.

При учете коэффициента условий работы бетона gb2 = 0,9 (см. п. 3.1) подбор растянутой арматуры можно также производить, пользуясь прил. 2.

 

Таблица 20

 

x

z

am

x

z

am

x

z

am

0,01

0,995

0,010

0,26

0,870

0,226

0,51

0,745

0,380

0,02

0,990

0,020

0,27

0,865

0,234

0,52

0,740

0,385

0,03

0,985

0,030

0,28

0,860

0,241

0,53

0,735

0,390

0,04

0,980

0,039

0,29

0,855

0,243

0,54

0,730

0,394

0,05

0,975

0,049

0,30

0,850

0.255

0,55

0,725

0,399

0,06

0,970

0,058

0,31

0,845

0,262

0,56

0,720

0,403

0,07

0,965

0,068

0,32

0,840

0,269

0,57

0,715

0,407

0,08

0,960

0,077

0,33

0,835

0,276

0,58

0,710

0,412

0,09

0,955

0,086

0,34

0,830

0,282

0,59

0,705

0,416

0,10

0,950

0,095

0,35

0,825

0,289

0,60

0,700

0,420

0,11

0,945

0,104

0,36

0,820

0,295

0,62

0,690

0,428

0,12

0,940

0,113

0,37

0,815

0,302

0,64

0,680

0,435

0,13

0,935

0,122

0,38

0,810

0,308

0,66

0,670

0,442

0,14

0,930

0,130

0,39

0,805

0,314

0,68

0,660

0,449

0,15

0,925

0,139

0,40

0,800

0,320

0,70

0,650

0,455

0,16

0,920

0,147

0,41

0,795

0,326

0,72

0,640

0,461

0,17

0,915

0,156

0,42

0,790

0,332

0,74

0,630

0,466

0,18

0,910

0,164

0,43

0,785

0,338

0,76

0,620

0,471

0,19

0,905

0,172

0,44

0,780

0,343

0,78

0,610

0,476

0,20

0,900

0,180

0,45

0,775

0,349

0,80

0,600

0,480

0,21

0,895

0,188

0,46

0,770

0,354

0,85

0,575

0,489

0,22

0,890

0,196

0,47

0,765

0,360

0,90

0,550

0,495

0,23

0,885

0,204

0,48

0,760

0,365

0,95

0,525

0,499

0,24

0,880

0,211

0,49

0,755

0,370

1,00

0,500

0,500

0,25

0,875

0,219

0,50

0,750

0,375

 

Для изгибаемых элементов прямоугольного сечения:

 

 

3.19. Площади сечений растянутой Аs и сжатой  арматуры, соответствующие минимуму их суммы, для элементов из бетона класса В30 и ниже рекомендуется определять, если по расчету требуется сжатая арматура (см. п. 3.18), по фор­мулам:

 

                                   (24)

 

                                (25)

 

Если значение принятой площади сечения сжа­той арматуры  значительно превышает значение, вычисленное по формуле (24), площадь сечения растянутой арматуры определяется с учетом фактического значения площади  по формуле

 

                                    (26)

 

где x определяется по табл. 20 в зависимости от значения  которое должно удовлетворять условию  (см. табл. 18 и 19).

ТАВРОВЫЕ И ДВУТАВРОВЫЕ СЕЧЕНИЯ

3.20. Расчет сечений, имеющих полку в сжатой зоне (тавровых, двутавровых и т. п.), должен производиться в зависимости от положения границы сжатой зоны:

а) если граница сжатой зоны проходит в полке (черт. 5, а), т.е. соблюдается условие

 

                                          (27)

 

расчет производится как для прямоугольного сечения шириной  в соответствии с пп. 3.15 и 3.17;

б) если граница сжатой зоны проходит в ребре (черт. 5, б), т.е. условие (27) не соблюдается, рас­чет производится из условия

 

               (28)

 

При этом высота сжатой зоны бетонах определя­ется по формуле

 

                        (29)

 

и принимается не более xR h0 (см. табл. 18 и 19).

Если х ³ xR h0 , условие (28) можно записать в виде

 

                   (30)

 

где aR см. табл. 18 и 19.

При этом следует учитывать рекомендации п. 3.16.

 

Примечания: 1. При переменной высоте свесов полки допускается принимать значение  равным средней высоте свесов.

2. Ширина сжатой полки  вводимая в расчет, не должна превышать величин, указанных в п. 3.23.

 

 

Черт. 5. Положение границы сжатой зоны в тавровом сече­нии

изгибаемого железобетонного элемента

 

а в полке; б в ребре

 

3.21. Требуемая площадь сечения сжатой арма­туры определяется по формуле

 

                    (31)

 

где aR см. табл. 18 и 19.

3.22. Требуемая площадь сечения растянутой арматуры определяется следующим образом:

а) если граница сжатой зоны проходит в полке, т. е. соблюдается условие

 

                      (32)

 

площадь сечения растянутой арматуры определяется как для прямоугольного сечения шириной  в соот­ветствии с пп. 3.18 и 3.19;

б) если граница сжатой зоны проходит в ребре, т. е. условие (32) не соблюдается, площадь сечения растянутой арматуры определяется по формуле

 

                  (33)

 

где x определяется по табл. 20 в зависимости от значения

 

         (34)

 

При этом должно удовлетворяться условие am £ aR (см. табл. 18 и 19).

3.23 (3.16). Вводимое в расчет значение  прини­мается из условия, что ширина свеса в каждую сто­рону от ребра должна быть не более 1/6 пролета элемента и не более:

а) при наличии поперечных ребер или при  расстояния в свету между продоль­ными ребрами;

б) при отсутствии поперечных ребер (или при расстояниях между ними больших, чем расстояния между продольными ребрами) и

в) при консольных свесах полки:

при

  ²  

  ²   свесы не учитываются.

 

ПРИМЕРЫ РАСЧЕТА

 

Прямоугольные сечения

 

Пример 2. Дано: сечение размерами b = 300 мм, h = 600 мм; a = 40 мм; gb2 = 0,9 (нагрузки не­продолжительного действия отсутствуют); изгибаю­щий момент М = 200 кН · м; бетон тяжелый класса В15 (Rb = 7,7 МПа); арматура класса A-II (Rs = 280 МПа).

Требуется определить площадь сечения продоль­ной арматуры.

Расчет. H0 = 600 40 = 560 мм. Подбор про­дольной арматуры производим согласно п. 3.18. По формуле (22) вычислим значение am:

 

 

Из табл. 18 для элемента из бетона класса В15 с арматурой класса A-II при gb2 = 0,9 находим aR = 0,449.

Так как am = 0,276 < aR = 0,449, сжатая арма­тура по расчету не требуется.

Из табл. 20 при am = 0,276 находим z = 0,835.

Требуемую площадь сечения растянутой арма­туры определим по формуле (23):

 

 

Принимаем 2 Æ 28 + 1 Æ 25 (As = 1598 мм2).

Пример 3. Дано: сечение размерами b = 300 мм, h = 800 мм; а = 70 мм; растянутая арматура класса A-III (Rs = 365 МПа); площадь ее сечения Аs = 2945 мм2 (6 Æ 25); gb2 = 0,9 (нагрузки не­продолжительного действия отсутствуют); бетон тяжелый класса В25 (Rb = 13 МПа); изгибающий момент М = 550 кН · м.

Требуется проверить прочность сечения.

Расчет. H0 = 800 70 = 730 мм. Проверку прочности сечения производим согласно п. 3.17.

Определим значение х:

 

 

Из табл. 18 для элементов из бетона класса В25 с арматурой класса A-III при gb2 = 0,9 находим xR = 0,604.

Так как  прочность проверим из условия (20):

 

 

т. е. прочность сечения обеспечена.

Пример 4. Дано: сечение размерами b = 300 мм, h = 800 мм; а = 50 мм; арматура класса А-III (Rs = Rsc = 365 МПа); изгибающий момент с учетом крановой нагрузки МII = 780 кН · м; момент без учета крановой нагрузки  МI = 670 кН · м; бетон тяжелый класса В15 (Rb = 8,5 МПа при gb2 = 1,0).

Требуется определить площадь сечения продоль­ной арматуры.

Расчет производим на полную нагрузку, кор­ректируя расчетное сопротивление бетона согласно п. 3.1.

Так как  принимаем Rb = 8,5 · 1,05 = 8,93 МПа.

Вычислим h0 = 800 50 = 750 мм.

Определим требуемую площадь продольной арма­туры согласно п. 3.18. По формуле (22) находим значение am:

 

 

Так как am = 0,518 > aR = 0,42 (см. табл. 18 при gb2 = 1,0), при заданных размерах сечения и классе бетона необходима сжатая арматура. Далее расчет производим согласно п. 3.19.

Принимая а' = 30 мм, по формулам (24) и (25) определим необходимую площадь сечения сжатой и растянутой арматуры:

 

 

 

 

Принимаем  = 763 мм2 (3 Æ 18); As = 4021 мм2 (5 Æ 32).

Пример 5. Дано: сечение размерами b = 300 мм, h = 700 мм; а = 50 мм, а' = 30 мм; бетон тяжелый класса В30 (Rb = 15,5 МПа при gb2 = 0,9); арма­тура класса A-III (Rs = 365 МПа); площадь сечения сжатой арматуры  = 942 мм2 (3 Æ 20); изгибаю­щий момент М = 580 кН · м.

Требуется определить площадь сечения растяну­той арматуры.

Расчет. h0 = 700 50 = 650 мм. Расчет про­изводим с учетом площади сжатой арматуры соглас­но п. 3.19.

Вычислим значение am:

 

 

am = 0,187 < aR = 0,413 (см. табл. 18).

По табл. 20 при am = 0,187 находим x = 0,21. Необходимую  площадь  растянутой арматуры определим по формуле (26):

 

 

Принимаем 3 Æ 36 (Rs = 3054 мм2).

Пример 6. Дано: сечение размерами b = 300 мм, h = 700 мм; a = 70 мм, a’ = 30 мм; бетон тяжелый класса В25 (Rb = 13 МПа при gb2 = 0,9); арматура класса A-III (Rs = Rsc = 365 МПа); площадь сече­ния растянутой арматуры As = 4826 мм2 (6 Æ 32), сжатой  = 339 мм2 (3 Æ 12); изгибающий мо­мент М = 600 кН · м.

Требуется проверить прочность сечения.

Расчет. h0 = 700 70 = 630 мм. Проверку прочности сечения производим согласно п. 3.15.

По формуле (16) вычислим высоту сжатой зоны х:

 

 

По табл. 18 находим xR = 0,604 и aR = 0,422.

Так как х = 420 мм > xR h0 = 0,604 · 630 = 380 мм, прочность сечения проверим из условия (18):

 

 

т. е. прочность сечения обеспечена.

 

Тавровые и двутавровые сечения

 

Пример 7 . Дано: сечение размерами  = 1500 мм,  = 50 мм, b = 200 мм, h = 400 мм; a = 40 мм; бетон тяжелый класса В25 (Rb = 13 МПа при gb2 = 0,9); арматура класса A-III (Rs = 365 МПа); изгибающий момент М = 300 кН · м.

Требуется определить площадь сечения продоль­ной арматуры.

Расчет. h0 = 400 40 = 360 мм. Расчет про­изводим согласно п. 3.22 в предположении, что сжатая арматура по расчету не требуется.

Проверим условие (32), принимая  = 0;  = 13 · 1500 · 50 (360 0,5 · 50) = 326,6 · 106 Н · мм = 326,6 кН · м > М = 300 кН · м, т. е. граница сжатой зоны проходит в полке, и расчет производим как для прямоуголь­ного сечения шириной b =  = 1500 мм согласно п. 3.18. Вычислим значение am:

 

          (см. табл. 18),

 

т. е. сжатая арматура действительно не требуется.

Площадь сечения растянутой арматуры вычислим по формуле (23). Для этого по табл. 20 при am = 0,1 19 находим z = 0,938, тогда

 

 мм2.

 

Принимаем 4 Æ 28 (As = 2463 мм2).

Пример 8. Дано: сечение размерами  = 400 мм,  = 120 мм, b = 200 мм, h = 600 мм; a = 60 мм; бетон тяжелый класса В15 (Rb = 7,7 МПа при gb2 = 0,9); арматура класса A-III (Rs = 365 МПа); изгибающий момент M = 270 кН · м.

Требуется определить площадь сечения растяну­той арматуры.

Расчет. h0 = 600 60 = 540 мм. Расчет произ­водим согласно п. 3.22 в предположении, что сжатая арматура не требуется.

Так как  = 7,7 · 400 · 120 (540 0,5 · 120) = 177,4 · 106 Н · мм = 177,4 кН · м < М = 270 кН · м, т. е. граница сжа­той зоны проходит в ребре, площадь сечения растя­нутой арматуры определим по формуле (33).

Для этого вычислим значение am:

 

 

(см. табл. 18), следовательно, сжатая арматура не требуется.

Из табл. 20 при am = 0,404 находим x = 0,563, тогда

 

 

Принимаем 4 Æ 25 (As = 1964 мм2).

Пример 9. Дано: сечение размерами  = 400 мм,  = 100 мм, b = 200 мм, h = 600 мм; a = 70 мм; бетон тяжелый класса В25 (Rb = 13 МПа при gb2 = 0,9); растянутая арматура класса A-III (Rs = 365 МПа); площадь ее сечения Аs = 1964 мм2 (4 Æ 25);  = 0; изгибающий момент М= 300 кН · м.

Требуется проверить прочность сечения.

Расчет. h0 = 600 70 = 530 мм. Проверку прочности сечения производим согласно п. 3.20, принимая  = 0. Так как RsAs = 365 · 1964 = 716 860 H >  = 13 · 400 · 100 = 520 000 H, граница сжатой зоны проходит в ребре. Прочность сечения проверим из условия (28).

Для этого по формуле (29) определим высоту сжатой зоны х:

 

(xR найдено из табл. 18) ;

 

 

 

т. е. прочность сечения обеспечена.

 

ЭЛЕМЕНТЫ, РАБОТАЮЩИЕ НА КОСОЙ ИЗГИБ

 

3.24. Расчет прямоугольных, тавровых, двутавро­вых и Г-образных сечений элементов, работающих на косой изгиб, допускается производить, прини­мая форму сжатой зоны по черт. 6, при этом должно удовлетворяться условие

 

                           (35)

 

где Мx составляющая изгибающего момента в плоскости оси х (за оси х и y принима­ются две взаимно перпендикулярные оси, проходящие через центр тяжести сечения растянутой арматуры парал­лельно сторонам сечения; для сечения с полкой ось х принимается парал­лельно плоскости ребра);

 

                                                                                  (36)

 

Ab площадь сжатой зоны бетона, равная:

 

                                    (37)

 

Аov площадь наиболее сжатого свеса полки;

x1 размер сжатой зоны бетона по наиболее сжатой боковой стороне сечения, опре­деляемый по формуле

 

                         (38)

 

b0 расстояние от центра тяжести сечения растянутой арматуры до наиболее сжа­той боковой грани ребра (стороны);

Sov,y статический момент площади Аov в плоскости оси у относительно оси х;

Ssy статический момент площади  в плос­кости оси у относительно оси х;

My составляющая изгибающего момента в плоскости оси у;

Sov,x статический момент площади Аov в плоскости оси х относительно оси у;

Ssx статический момент площади  в плос­кости оси х относительно оси у.

 

 

Черт. 6. Форма сжатой зоны в поперечном сечения железо­бетонного

элемента, работающего на косой изгиб

 

а таврового сечения; б прямоугольного сечения; 1плоскость действия изгибающего момента; 2 центр тяжести сечения растянутой арматуры

 

Если учитываемые в расчете растянутые арматур­ные стержни располагаются в плоскости оси х (черт. 7), значение x1 вычисляется по формуле

 

                                     (39)

 

где      

 

b угол наклона плоскости действия изги­бающего момента к оси х, т.е. ctgb = Мx/Мy.

 

 

Черт. 7. Сечение с растя­нутыми   арматурными стержнями

в плоскости оси х

 

Формулой (39) также следует пользоваться независимо от расположения арматуры, если необ­ходимо определить предельное значение изгибаю­щего момента при заданном угле b.

При расчете прямоугольных сечений значения Аov, Sov,x и Sov,y в формулах (35), (36), (38) и (39) принимаются равными нулю.

Если Ab < Аov или x1 < 0,2, расчет произво­дится как для прямоугольного сечения шириной b =  

Если выполняется условие

 

                                                  (40)

 

(где bov ширина наименее сжатого свеса полки), расчет производится без учета косого изгиба, т. е. по формулам пп. 3.15 и 3.20, на действие момента М = Мx, при этом следует проверить условие (41), принимая x1, как при косом изгибе.

При определении значения Ab по формуле (37) напряжение в растянутом стержне, ближайшем к границе сжатой зоны, не должно быть менее Rs, что обеспечивается соблюдением условия

 

                               (41)

 

где  xR см. табл. 18 и 19;

b0i, h0i расстояния   от   рассматриваемого стержня соответственно до наиболее сжатой боковой грани ребра (стороны) и до наиболее сжатой грани, нормаль­ной к оси х (см. черт. 6);

ширина наиболее сжатого свеса;

q угол наклона прямой, ограничиваю­щей сжатую зону, к оси у; значение tgq определяется по формуле

 

 

Если условие (41) не соблюдается, расчет сечения производится последовательными приближениями, заменяя в формуле (37) для каждого растянутого стержня величину Rs значениями напряжений, равными:

 

 но не более Rs,

 

где yc, w принимаются по табл. 18 и 19, при этом оси х и у проводятся через равно­действующую усилий в растянутых стержнях.

При проектировании конструкций не рекоменду­ется допускать превышения значения xi над xR более чем на 20 %, при этом допускается производить только один повторный расчет с заменой в формуле (37) значений Rs для растянутых стерж­ней, для которых xi > xR, на напряжения, равные:

 

                                      (42)

 

При повторном расчете значение х1 определя­ется по формуле (39) независимо от расположения растянутых стержней.

Расчет на косой изгиб производится согласно п. 3.27, если выполняются условия:

для прямоугольных, тавровых и Г-образных сечений с полкой в сжатой зоне

 

                                             (43)

 

для двутавровых, тавровых и Г-образных сечений с полкой в растянутой зоне

 

                                 (44)

 

где  hf, bov,t высота и ширина наименее растя­нутого свеса полки (черт. 8).

 

 

Черт. 8. Тавровое сечение со сжатой зоной,

заходящей в наименее растянутый свес полки

 

При пользовании формулой (37) за растянутую арматуру площадью Аs рекомендуется принимать арматуру, располагаемую вблизи растянутой грани, параллельной оси у, а за сжатую арматуру пло­щадью   арматуру, располагаемую вблизи сжа­той грани, параллельной оси у, но по одну наиболее сжатую сторону от оси х (см. черт. 6).

3.25. Требуемое количество растянутой арматуры при косом изгибе для элементов прямоугольного, таврового и Г-образного сечений с полкой в сжатой зоне рекомендуется определять с помощью черт. 9. Для этого ориентировочно задаются положением центра тяжести сечения растянутой арматуры и по графику определяют as в зависимости от значений:

 

 

 

 

[обозначения см. формулы (35) — (38)].

Если amx < 0, расчет производится как для прямоугольного сечения, принимая  

Если значение а на графике находится по левую сторону от кривой, отвечающей параметру  подбор арматуры производится без учета косого изгиба, т. е. согласно пп. 3.18, 3.19 и 3.22, на дейст­вие момента М = Мx.

 

 

Черт. 9. График несущей способности прямоугольного, таврового

и Г-образного сечений для элементов, работаю­щих на косой изгиб

 

Требуемая площадь растянутой арматуры при условии работы ее с полным расчетным сопротивле­нием определяется по формуле

 

                                  (45)

 

где Аov см. формулу (36).

Центр тяжести сечения фактически принятой растянутой арматуры должен отстоять от растяну­тых граней не дальше, чем принятый в расчете центр тяжести. В противном случае расчет повторяют, принимая новый центр тяжести сечения растянутой арматуры.

Условием работы растянутой арматуры с полным расчетным сопротивлением является выполнение условия (41).

Для элементов из бетона класса В25 и ниже усло­вие (41) всегда выполняется, если значения as на черт. 9 находятся внутри области, ограниченной осями координат и кривой, отвечающей параметру

Если условие (41) не выполняется, следует поставить (увеличить) сжатую арматуру либо повысить класс бетона, либо увеличить размеры сечения (особенно наиболее сжатого свеса).

Значения as на графике не должны находиться между осью amy и кривой, соответствующей пара­метру h0/h. В противном случае x1 становится более h, и расчет тогда производится согласно п. 3.27.

3.26. Расчет на косой изгиб прямоугольных и двутавровых симметричных сечений с симметрично расположенной арматурой может производиться согласно п. 3.76, принимая N = 0.

3.27. Для не оговоренных в пп. 3.24—3.26 сече­ний, а также при выполнении условий (43) и (44) или если арматура распределена по сечению, что не позволяет до расчета установить значения Аs и  и расположение центров тяжести растянутой и сжатой арматуры, расчет на косой изгиб следует производить, пользуясь формулами для общего случая расчета нормального сечения (см. п. 3.76) с учетом указаний п. 3.13.

Порядок пользования формулами общего случая рекомендуется следующий:

1) проводят две взаимно перпендикулярные оси х и у через центр тяжести сечения наиболее растяну­того стержня по возможности параллельно сторонам сечения;

2) подбирают последовательными приближения­ми положение прямой, ограничивающей сжатую зо­ну, так, чтобы при N = 0 удовлетворялось равен­ство (154) после подстановки в него значений ssi, определенных по формуле (155). При этом угол наклона этой прямой q принимают постоянным и равным углу наклона нейтральной оси, определен­ному как для упругого материала;

3) определяют моменты внутренних усилий отно­сительно осей х и у соответственно Myu и Мxu.

Если оба эти момента оказываются больше или меньше соответствующих составляющих внешнего момента (My и Мx), прочность сечения считается соответственно обеспеченной или необеспеченной.

Если один из моментов (например, Мyu) меньше соответствующей составляющей внешнего момента My, а другой момент больше составляющей внеш­него момента (т.е. Мxu > Мx), задаются другим углом q (большим, чем ранее принятый) и вновь производят аналогичный расчет.

 

Примеры расчета

 

Пример 10. Дано: железобетонный прогон кровли с уклоном 1:4 (ctgb = 4); сечение и расположение арматуры по черт. 10; gb2 = 0,9 (нагрузки непро­должительного действия отсутствуют); бетон тяже­лый класса В25 (Rb = 13 МПа); растянутая арма­тура класса A-III (Rs = 365 МПа); площадь ее сечения Аs = 763 мм2 (3 Æ 18);  = 0, изгибаю­щий момент в вертикальной плоскости М = 82,6 кН · м.

Требуется проверить прочность сечения.

Расчет. Из черт. 10 следует:

 

 мм;

 

 мм;

 

мм;

 

 мм.

 

 

Черт. 10. К примеру расчета 10

 

1 плоскость действия изгибающего момента; 2 центр тяжести

сечения растянутой арматуры

 

По формуле (37) определим площадь сжатой зоны бетона Аb:

 

 мм2.

 

Площадь наиболее сжатого свеса полки и стати­ческие моменты этой площади относительно осей х и у соответственно равны:

 

 мм2;

 

 мм3;

 

 мм3.

 

Так как Аb >Аov, расчет продолжаем как для таврового сечения.

 

 мм2.

 

Составляющие изгибающего момента в плос­кости осей у и х соответственно равны (при ctgb = 4):

 

 кН·м.

 

 кН·м.

 

Определим по формуле (38) размер сжатой зо­ны бетона x1 по наиболее сжатой стороне сечения, принимая Ssy = 0:

 

 

Проверим условие (40):

 

 

Следовательно, расчет продолжаем по форму­лам косого изгиба.

 

Проверим условие (41) для наименее растяну­того стержня. Из черт. 10 имеем b0i = 30 мм, h0i = 400 30 = 370 мм:

 

 

 

(см. табл. 18).

Условие (41) не соблюдается. Расчет повторим, заменяя в формуле (37) значение Rs для наименее растянутого стержня напряжением ss, определен­ным по формуле (42), корректируя значения h0 и b0.

Из табл. 18 имеем w = 0,746 и yc = 4,26.

 

 

Поскольку все стержни одинакового диаметра, новые значения Аb, b0 и h0 будут равны:

 

 мм2;

 

 мм;

 

 мм.

 

Аналогично определим значения Sov,y, Sov,x и Aweb:

 

 

 

 

Значение x1 определим по формуле (39):

 

 

 

Проверим прочность сечения из условия (35), принимая Ssx = 0:

 

 

т. е. прочность сечения обеспечена.

Пример 11. По данным примера 10 необходимо подобрать площадь растянутой арматуры при мо­менте в вертикальной плоскости М = 64 кН·м.

Расчет. Составляющие изгибающего момента в плоскости осей у и х равны:

 

 

 

Определим необходимое количество арматуры согласно п. 3.25.

Принимая значения b0, h0, S0v,x, S0v,y, Ssy =  = 0 из примера 10, находим значение amx и amy:

 

 

 

Так как amx > 0, расчет продолжаем как для таврового сечения.

Поскольку точка с координатами amx = 0,227 и amy = 0,114 на черт. 9 находится по правую сторону от кривой, отвечающей параметру  и по левую сторону от кривой, отвечающей параметру  арматура будет работать с полным расчетным сопротив­лением, т. е. условие (41) выполнено. Требуемую площадь растянутой арматуры определим по фор­муле (45).

По черт. 9 при amx = 0,227 и amy = 0,114 нахо­дим as = 0,25. Тогда, принимая  = 0, имеем

 

 мм2.

 

Принимаем стержни 3 Æ 16 (As = 603 мм2) и располагаем их, как показано на черт. 10.

Пример 12. Дано: навесная стеновая панель общественного здания пролетом 5,8 м с попереч­ным сечением по черт. 11; бетон легкий класса В3,5, марки по средней плотности D1100; арма­тура класса А-III; нагрузки на панель в стадии эксплуатации: в плоскости панели собственный вес и вес вышерасположенного остекления (вклю­чая простенки) высотой 3м    3,93 кН/м2, из плоскости панели ветровая нагрузка 0,912 кН/м2,

Требуется проверить прочность панели в стадии эксплуатации.

 

 

Черт. 11. К примеру расчета 12

 

1 8 стержни

 

Расчет. Сначала определим изгибающие мо­менты, действующие в среднем сечении панели в плоскости и из плоскости панели.

Согласно п. 2.13 определим нагрузку от собст­венного веса панели. Поскольку класс легкого

бетона ниже В12,5, плотность бетона панели равна g = 1,1D = 1,1·1100 = 1210 кг/м3. Тогда нагруз­ка от собственного веса панели будет равна:

 

 

а с учетом коэффициента надежности по нагрузке gf = 1,2 (поскольку g < 1800 кг/м3)

 

 

Нагрузка от веса вышерасположенного остекле­ния qg = 3,93 · 3 = 11,8 кН/м.

Итого нагрузка, действующая в плоскости панели, равна:

 

 

а момент в середине панели от этой нагрузки

 

 

Ветровая нагрузка на 1 м длины панели, учиты­вая передачу нагрузки от выше- и нижерасположенного остекления, равна:

 

 

а момент от этой нагрузки равен:

 

 

Поскольку арматура распределена неравномерно по всему сечению, прочность проверим по фор­мулам общего случая расчета согласно п. 3.76 (с учетом п. 3.13).

Все стержни обозначим номерами, как показано на черт. 11. Через центр наиболее растянутого стержня 1 проводим ось х параллельно размеру h = 1195 мм и ось у параллельно размеру b = 340 мм.

Угол q между осью у и прямой, ограничивающей сжатую зону, принимаем как при расчете упругого тела на косой изгиб:

 

 

Определим в первом приближении площадь сжатой зоны бетона по формуле (37), т. е. приняв все стержни с полными расчетными сопротивле­ниями, при этом стержень 8 принимаем сжатым, а остальные стержни растянутыми.

Для стержней 1, 2, 7, 8 (Æ 10) имеем Rs = Rsc = 365 МПа, а для стержней 3 6 (Æ 6) Rs = 355 МПа, тогда:

 

 

 

Поскольку имеет место ветровая нагрузка, зна­чение Rb принимаем с учетом коэффициента gb2 = 1,1, т.е. Rb = 2,3 МПа.

 

 

Площадь сжатой зоны в предположении треуголь­ной ее формы определяется по формуле  где x1 размер сжатой зоны по стороне сечения h, отсюда x1 равен:

 

 

Размер у1 сжатой зоны по стороне сечения b равен:

 

 

т. е. действительно сжатая зона имеет треугольную форму.

Нанеся эти размеры на черт. 11, видим, что стержень 8 оказался в сжатой зоне, а все осталь­ные в растянутой. Проверим напряжение ssi в стержнях, ближайших к границе сжатой зоны, т. е. в стержнях 68, по формуле (155), определяя отношения  по формуле  где axi и ayi расстояния от i-го стержня до наиболее сжатой стороны сечения соответственно в направлении осей х и у.

Принимая ssc,u = 400 МПа, w = 0,8 0,008Rb = 0,8 0,008 · 2,3 = 0,782, получим

 

 

Вычисления сведем в следующую таблицу:

 

Номер стерж­ня

Asi, мм2

ayi, мм

axi, мм

ayi tgq +

+ axi, мм

xi

ssi >< Rs, МПа

6

28,3

40

555

662

0,719

120,9 < 355

7

78,5

300

80

881

0,54

620 > 365

8

78,5

40

80

187

2,545

959 < 365

 

Из таблицы видно, что только для стержня 6 было принято при вычислении Ab неправильное напряжение: 355 МПа вместо 120,9 МПа. Прини­маем в этом стержне напряжение несколько большее, чем вычисленное, ss6 = 160 МПа. Из равен­ства (154) при N = 0 вычислим значение Ab:

 

 

Аналогично вычислим  мм.

Отсюда для стержня 6 имеем:

 

 

 

т. е. значение ss6 близко к принятому, и, следова­тельно, Ab и x1 не следует пересчитывать.

Определим моменты внутренних сил относи­тельно осей у и х соответственно Мxu и Мyu.

 

 

 

 

Поскольку оба внутренних момента превышают обе составляющие внешнего момента, прочность сечения обеспечена.

 

РАСЧЕТ СЕЧЕНИЙ, НАКЛОННЫХ

К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

 

3.28 (3.29). Расчет железобетонных элементов по наклонным сечениям должен производиться для обеспечения прочности:

на действие поперечной силы по наклонной полосе между наклонными трещинами согласно п. 3.30;

на действие поперечной силы по наклонной трещине для элементов с поперечной арматурой согласно пп. 3.31—3.39, для элементов без поперечной арматуры согласно пп. 3.40 и 3.41;

на действие изгибающего момента по наклон­ной трещине согласно пп. 3.423.47.

Короткие консоли колонн рассчитываются на действие поперечных сил по наклонной сжатой полосе между грузом и опорой согласно п. 3.99.

Балки, нагруженные одной или двумя сосредо­точенными силами, располагаемыми не далее h0 от опоры, а также короткие балки пролетом l £ 2h0 рекомендуется рассчитывать на действие попереч­ной силы, рассматривая прочность наклонной сжатой полосы между грузом и опорой с учетом соответствующих рекомендаций. Допускается производить расчет таких балок как элементов без поперечной арматуры согласно п. 3.40.

 

Примечание. В настоящем Пособии под поперечной арматурой имеются в виду хомуты и отогнутые стержни (отгибы). Термин хомуты" включает в себя поперечные стержни сварных каркасов и хомуты вязаных каркасов.

 

3.29. Расстояния между хомутами s, между опорой и концом отгиба, ближайшего к опоре, s1, а также между концом предыдущего и началом последующего отгибов s2 (черт. 12) должны быть не более величины smax:

 

                                       (46)

 

где jb4 см. табл. 21.

Кроме того, эти расстояния должны удовлетво­рять конструктивным требованиям пп. 5.69 и 5.71.

 

 

Черт. 12. Расстояния между хомутами, опорой и отгибами

 

При линейном изменении ширины b по высоте в расчет наклонных сечений [ в формулу (46) и по­следующие] вводится ширина элемента на уровне середины высоты сечения (без учета полок).

 

РАСЧЕТ ЭЛЕМЕНТОВ НА ДЕЙСТВИЕ

ПОПЕРЕЧНОЙ СИЛЫ

ПО НАКЛОННОЙ СЖАТОЙ ПОЛОСЕ

 

3.30 (3.30). Расчет железобетонных элементов на действие поперечной, силы для обеспечения проч­ности по наклонной полосе между наклонными трещинами должен производиться из условия

 

                                  (47)

 

где   Q поперечная сила в нормальном сечении, принимаемом на расстоянии от опоры не менее h0;

jw1 коэффициент, учитывающий влияние хомутов, нормальных к оси элемента, и определяемый по формуле

 

                                            (48)

 

но не более 1,3;

 

здесь

jb1 коэффициент, определяемый по формуле

 

                                              (49)

 

здесь b коэффициент,   принимаемый равным для тяжелого и мелко­зернистого бетонов 0,01, для легкого бетона 0,02;

Rb в МПа.

 

РАСЧЕТ НАКЛОННЫХ СЕЧЕНИЙ

НА ДЕЙСТВИЕ ПОПЕРЕЧНОЙ СИЛЫ

ПО НАКЛОННОЙ ТРЕЩИНЕ

 

Элементы постоянной высоты,

армированные хомутами без отгибов

 

3.31. Проверка прочности наклонного сечения на действие поперечной силы по наклонной трещине (черт. 13) производится из условия

 

                                               (50)

 

где Q поперечная сила от внешней нагрузки, расположенной по одну сторону от рас­сматриваемого   наклонного   сечения; при вертикальной нагрузке, приложенной к верхней грани элемента, значение Q принимается в нормальном сечении, про­ходящем через наиболее удаленный от опоры конец наклонного сечения; при нагрузке, приложенной к нижней грани элемента или в пределах высоты его сечения, также допускается значение Q при­нимать в наиболее удаленном от опоры конце наклонного сечения, если хомуты, установленные на действие отрыва соглас­но п. 3.97, не учитываются в данном расчете, при этом следует учитывать возможность отсутствия временной на­грузки на участке в пределах наклонного сечения;

Qb поперечное усилие, воспринимаемое бе­тоном и равное:

 

                                                      (51)

 

                                                                (52)

 

jb2 коэффициент, учитывающий вид бетона и определяемый по табл. 21;

jf коэффициент, учитывающий влияние сжа­тых полок в тавровых и двутавровых эле­ментах и определяемый по формуле

 

                                              (53)

 

но не более 0,5,

при этом значение  принимается не более ;

учет полок производится, если поперечная арматура в ребре заанкерена в полке, где расположена поперечная арматура, соединяющая свесы полки с ребром;

с длина проекции наклонного сечения на продольную ось элемента, определяемая согласно п. 3.32.

 

 

Черт. 13. Схема усилий в наклонном сечении элементов с

хомутами при расчете его на действие поперечной силы

 

Таблица 21

 

Бетон

Коэффициенты

 

jb2

jb3

jb4

Тяжелый

2,00

0,6

1,5

Мелкозернистый

1,70

0,5

1,2

Легкий при марке по средней плотности D:

1900 и выше

 

 

1,90

 

 

0,5

 

 

1,2

1800 и ниже при мелком за­полнителе:

плотном

 

 

1,75

 

 

0,4

 

 

1,0

пористом

1,50

0,4

1,0

 

Значение Qb принимается не менее Qb,min = jb3 (1 + jf) Rbtbh0 (jb3 см. табл. 21);

Qsw поперечное усилие, воспринимаемое хо­мутами и равное:

 

                                   (54)

 

здесь qsw усилие в хомутах на единицу длины элемента в пределах

наклонного сечения, опреде­ляемое по формуле

 

                                              (55)

 

c0 длина проекции наклонной трещины на продольную ось элемента, принимаемая рав­ной:

 

                                                   (56)

 

но не более с и не более 2h0, а также не менее h0, если c > h0.

При этом для хомутов, устанавливаемых по расчету (т. е. когда не выполняются требования пп. 3.40 и 3.41), должно удовлетворяться условие

 

                                                 (57)

 

Разрешается не выполнять условие (57), если в формуле (52) учитывать такое уменьшенное значение Rbtb, при котором условие (57) пре­вращается в равенство, т. е. если принимать в этом случае всегда принимается c0 =2h0, но не более с.

3.32. При проверке условия (50) в общем случае задаются рядом наклонных сечений при различных значениях с, не превышающих расстояния от опоры до сечения с максимальным изгибающим моментом и не более (jb2/jb3)h0.

При действии на элемент сосредоточенных сил значения с принимаются равными расстояниям от опоры до точек приложения этих сил (черт. 14).

 

 

Черт. 14. Расположение расчетных наклонных сечений при

сосредоточенных силах

 

1 — наклонное сечение, проверяемое на действие попереч­ной

силы Q1, 2 то же, силы Q2

 

При расчете элемента на действие равномерно распределенной нагрузки q значение с принимается равным  а если q1 > 0,56qsw, следует принимать  где значение q1 определяется следующим образом:

а) если действует фактическая равномерно рас­пределенная нагрузка, q1 = q;

б) если нагрузка q включает в себя временную нагрузку, которая приводится к эквивалентной равномерно распределенной нагрузке v (когда эпюра моментов М от принятой в расчете нагруз­ки v всегда огибает эпюру М от любой фактической временной нагрузки), q1 = g + v/2 (где g постоян­ная сплошная нагрузка).

При этом значение Q принимается равным Qmax q1c, где Qmax поперечная сила в опорном сечении.

3.33. Требуемая интенсивность хомутов, выра­жаемая через qsw (см. п. 3.31), определяется сле­дующим образом:

а) при действии на элемент сосредоточенных сил, располагаемых на расстояниях сi от опоры, для каждого наклонного сечения с длиной проекции сi, не превышающей расстояния до сечения с макси­мальным изгибающим моментом, значение qsw определяется в зависимости от коэффициента  по одной из следующих формул:

если                              

 

                                                                            (58)

 

если                              

 

                                                                                (59)

 

если                              

 

                                                                           (60)

 

если                              

 

                                                                                  (61)

 

(здесь h0 принимается не более ci).

Окончательно принимается наибольшее значение qsw(i).

В формулах п. 3.33:

Qi поперечная сила в нормальном се­чении, расположенном на расстоя­нии ci от опоры;

Qbi —определяется по формуле (51) при с = ci;

Qb,min, Мb см. п. 3.31;

c0 принимается равным сi, но не более 2h0;

б) при действии на элемент только равномерно распределенной нагрузки q требуемая интенсивность хомутов определяется по формулам:

 

при                               

 

                                                                               (62)

 

при                               

 

                                                                           (63)

 

в обоих случаях qsw принимается не менее ;

 

при                               

 

                                        (64)

 

В случае, если полученное значение qыц не удов­летворяет условию (57), его следует вычислить по формуле

 

 

здесь

Qmax поперечная сила в опорном сечении;

Mb, jb2, jb3 см. п. 3.31;

q1 см. п. 3.32.

3.34. При уменьшении интенсивности хомутов от опоры к пролету с qsw1 на qsw2 (например, увеличением шага хомутов) следует проверить условие (50) при значениях с, превышающих l1 длину участка элемента с интенсивностью хомутов qsw1 (черт. 15). При этом значение Qsw принимает­ся равным:

 

при                               

 

                                      

 

при                               

 

                                      

 

при                               

 

                                      

 

где  c01, c02 определяются по формуле (56) при qsw, соответственно равном qsw1 и qsw2.

 

 

Черт. 15. К расчету наклонных сечений при изменении

интенсивности хомутов

 

При действии на элемент равномерно распре­деленной нагрузки длина участка с интенсивностью qsw1 принимается не менее значения l1, определя­емого следующим образом:

 

если               

 

                       

 

где  но не более

 

при этом, если

 

 

если  

 

 

здесь q1 см. п. 3.32.

Если для значения qsw2 не выполняется условие (57), длина l1 вычисляется при скорректированных согласно п. 3.31 значениях  и  при этом сумма  принимается не менее нескорректирован­ного значения Qb,min.

 

Элементы постоянной высоты,

армированные отгибами

 

3.35. Проверка прочности наклонного сечения на действие поперечной силы для элемента с отги­бами производится из условия (50) с добавлением к правой части условия (50) значения

 

                                (65)

 

где Аs,inc площадь сечения отгибов, пересе­кающих опасную наклонную трещи­ну с длиной проекции c0;

q угол наклона отгибов к продоль­ной оси элемента.

Значение c0 принимается равным длине участка элемента в пределах рассматриваемого наклонного сечения, для которого выражение  принимает мини­мальное значение. Для этого рассматриваются участки от конца наклонного сечения или от конца отгиба в пределах длины с до начала отгиба, более близкого к опоре, или до опоры (черт. 16), при этом длина участка принимается не более значения c0, определяемого по формуле (56), а наклонные трещины, не пересекающие отгибы, при значениях c0 менее вычисленных по формуле (56) в расчете не рассматриваются.

 

 

Черт. 16. К определению наиболее опасной наклонной

трещины для элементов с отгибами при расчете на действие

поперечной силы

 

14 возможные наклонные трещины; 5 рассматри­ваемое

наклонное сечение

 

На черт. 16 наиболее опасная наклонная трещина соответствует минимальному значению из следу­ющих выражений:

 

1

2

3

4

[здесь с0 см. формулу (56)].

Значения с принимаются равными расстояниям от опоры до концов отгибов, а также до мест при­ложения сосредоточенных сил; кроме того, следует проверить наклонные сечения, пересекающие по­следнюю плоскость отгибов и заканчивающиеся на расстоянии c0, определяемом по формуле (56), от начала последней и предпоследней плоскостей отгибов (черт. 17).

Расположение отгибов должно удовлетворять требованиям пп. 3.29, 5.71 и 5.72.

 

 

Черт. 17. Расположение расчетных наклонных сечений в

элементе с отгибами

 

14 расчетные наклонные сечения

 

Элементы переменной высоты

с поперечным армированием

 

3.36 (3.33). Расчет элементов с наклонными сжа­тыми гранями на действие поперечной силы произ­водится согласно пп. 3.31, 3.32, 3.34 и 3.35 с учетом рекомендаций пп. 3.37 и 3.38, принимая в качестве рабочей высоты наибольшее значение h0 в пределах рассматриваемого наклонного сечения (черт. 18, а).

Расчет элементов с наклонными растянутыми гранями на действие поперечной силы также реко­мендуется производить согласно пп. 3.31, 3.32, 3.34 и 3.35, принимая в качестве рабочей высоты наибольшее значение h0 в пределах наклонного сечения (черт. 18, б).

а)

 

б)

 

 

Черт. 18. Балки с переменной высотой сечения

и наклон­ной гранью

 

а сжатой; б растянутой

 

Угол b между сжатой и растянутой гранями элемента должен удовлетворять условию tgb < 0,4.

3.37. Для балок без отгибов высотой, равно­мерно увеличивающейся от опоры к пролету (см. черт. 18), рассчитываемых на действие равно­мерно распределенной нагрузки q, наклонное сечение проверяется из условия (50) при невы­годнейшем значении с, определяемом следующим образом:

если выполняется условие

 

                                                   (66)

 

значение с вычисляется по формуле

 

                                                               (67)

 

если условие (66) не выполняется, значение с вычисляется по формуле

 

   (при этом с0 = с),                               (68)

 

а также, если

 

            (при этом с0 = 2h0),                  (69)

 

здесь  

Mb1 величина Mb, определяемая по фор­муле (52) как для опорного сечения балки с рабочей высотой h01 без учета приопорного уширения ширины b;

b угол между сжатой и растянутой гранями балки;

q1см. п. 3.32.

Рабочая высота h0 при этом принимаются равной h0 = h01 + ctgb.

При уменьшении интенсивности хомутов от qsw1 у опоры до qsw2 в пролете следует проверить усло­вие (50) при значениях с, превышающих l1 длину участка элемента с интенсивностью хомутов qsw1, при этом значение Qsw определяется согласно п. 3.34.

Участки балки с постоянным характером увели­чения рабочей высоты h0 не должны быть менее принятого значения с.

При действии на балку сосредоточенных сил про­веряются наклонные сечения при значениях с, при­нимаемых согласно п. 3.32, а также, если tgb > 0,1, определяемых по формуле (68) при q1 = 0.

3.38. Для консолей без отгибов высотой, равно­мерно увеличивающейся от свободного конца к опоре (черт. 19), в общем случае проверяют условие (50), задаваясь наклонными сечениями со значениями с, определяемыми по формуле (68) при q1 = 0 и принимаемыми не более расстояния от начала наклонного сечения в растянутой зоне до опоры. При этом за h01 и Q принимают соответственно рабочую высоту и поперечную силу в нача­ле наклонного сечения в растянутой зоне. Кроме того, проверяют наклонные сечения, проведенные до опоры, если при этом c0 < с.

 

 

Черт. 19. Консоль высотой, уменьшающейся от опоры

к свободному концу

 

При действии на консоль сосредоточенных сил начало наклонного сечения располагают в растяну­той зоне нормальных сечений, проходящих через точки приложения этих сил (см. черт. 19).

При действии равномерно распределенной на­грузки или нагрузки, линейно увеличивающейся к опоре, консоль рассчитывают так же, как элемент с постоянной высотой сечения согласно пп. 3.31 и 3.32, принимая рабочую высоту h0 в опорном сечении.

 

Элементы с поперечной арматурой

при косом изгибе

 

3.39. Расчет на действие поперечной силы эле­ментов прямоугольного сечения, подвергающихся косому изгибу, производится из условия

 

                                       (70)

 

где Qx, Qy составляющие поперечной силы, действующие соответственно в плоскости симметрии х и в нор­мальной к ней плоскости у в наиболее удаленном от опоры конце наклонного сечения;

Qbw(x), Qbw(y) предельные поперечные силы, воспринимаемые наклонным се­чением при действии их соот­ветственно в плоскостях х и у и принимаемые равными правой части условия (50).

При действии на элемент равномерно распреде­ленной нагрузки допускается определять значения с согласно п. 332 для каждой плоскости х и у.

 

Примечание. Отгибы при расчете на поперечную силу при косом изгибе не учитываются.

 

Элементы без поперечной арматуры

 

3.40 (3.32). Расчет элементов без поперечной ар­матуры на действие поперечной силы производится из условий:

 

a)                                                                           (71)

 

где Qmax максимальная поперечная сила у грани опоры;

 

б)                                                                              (72)

 

где  Q поперечная сила в конце наклонного сечения;

jb4 коэффициент, определяемый по табл. 21;

с длина проекции наклонного сечения, начинающегося от опоры; значение с принимается не более сmax = 2,5h0.

В сплошных плоских плитах с несвободными боковыми краями (соединенными с другими эле­ментами или имеющими опоры) допускается ука­занное значение сmax делить на коэффициент a:

 

                                         (73)

 

но не более 1,25.

При проверке условия (72) в общем случае задаются рядом значений с, не превышающих сmax.

При действии на элемент сосредоточенных сил значения с принимаются равными расстояниям от опоры до точек приложения этих сил (черт. 20).

 

 

Черт. 20. Расположение невыгоднейших наклонных сечений

в элементах без поперечной арматуры

 

1 наклонное сечение, проверяемое на действие попереч­ной

силы Q1, 2 то же, силы Q2

 

При расчете элемента на действие распределенных нагрузок, если выполняется условие

 

                                          (74)

 

значение с в условии (72) принимается равным cmax, а при невыполнении условия (74) —

 

                                         (75)

 

здесь q1 принимается при действии равномерно распределенной нагрузки в соответствии с п. 3.32, а при действии сплошной нагрузки с линейно изменяющейся интенсивностью равной средней интенсивности на приопорном участке длиной, равной чет­верти пролета балки (плиты) или половине вылета консоли, но не более сmax.

3.41. Для элементов с переменной высотой сечения при проверке условия (71) значение h0 принимается в опорном сечении, а при проверке условия (72) как среднее значение h0 в пределах наклонного сечения.

Для элементов с высотой сечения, увеличива­ющейся с увеличением поперечной силы, значение cmax принимается равным  при этом для сплошных плоских плит, указанных в п. 3.40,  

где h01 рабочая высота в опорном сечении;

b угол между растянутой и сжатой граня­ми элемента;

a см. формулу (73), где h допускается принимать по опорному сечению.

При действии на такой элемент распределенной нагрузки значение с в условии (72) принимается равным:

 

                          (76)

 

но не более сmax, где q1 см. п. 3.40.

 

РАСЧЕТ НАКЛОННЫХ СЕЧЕНИЙ

НА ДЕЙСТВИЕ ИЗГИБАЮЩЕГО МОМЕНТА

 

3.42 (3.35). Расчет элементов на действие из­гибающего момента для обеспечения прочности по наклонной трещине (черт. 21) должен производиться из условия

 

              (77)

 

где    М момент от внешней нагруз­ки, расположенной по одну сторону от рассматриваемого наклонного сечения, относи­тельно оси, перпендикуляр­ной плоскости действия мо­мента и проходящей через точку  приложения  равно­действующей   усилий Nb в сжатой зоне (черт. 22);

  RsAszs,    сумма моментов относительно той же оси от усилий

 SRswAswzsw,      соответственно в продольной арматуре, хомутах и

SRswAs,inczs,inc отгибах, пересекающих растянутую зо­ну наклонного сечения;

zs, zsw, zs,inc    расстояния от плоскостей рас­положения   соответственно продольной арматуры, хому­тов и отгибов до указанной оси.

 

 

Черт. 21. Схема усилий в наклонном сечении при расчете

его по изгибающему моменту

 

Высота сжатой зоны наклонного сечения, изме­ренная по нормали к продольной оси элемента, определяется из условия равновесия проекций усилий в бетоне сжатой зоны и в арматуре, пере­секающей наклонное сечение, на продольную ось элемента согласно пп. 3.15 и 3.20. При наличии в элементе отгибов в числитель выражения для х добавляется величина SRswAs,inccosq (где q угол наклона отгибов к продольной оси элемента).

Величину zs допускается принимать равной h0 0,5х, но при учете сжатой арматуры не бо­лее h0 а.

Величина SRswAswzsw при хомутах постоянной интенсивности определяется по формуле

 

                                           (78)

 

где qsw усилие в хомутах на единицу длины (см. п. 3.31);

с длина проекции наклонного сечения на продольную ось элемента, измерен­ная между точками приложения равно­действующих усилий в растянутой ар­матуре и сжатой зоне (см. п. 3.45).

Величины zs,inc для каждой плоскости отгибов определяются по формуле

 

                               (79)

 

где  а1 расстояние от начала наклонного сече­ния до начала отгиба в растянутой зоне (см. черт. 21).

 

а)

б)

 

Черт. 22. Определение расчетного значения момента

при расчете наклонного сечения

 

а для свободно опертой балки; б для консоли

 

3.43 (3.35). Расчет наклонных сечений на дей­ствие момента производится в местах обрыва или отгиба продольной арматуры, а также у грани крайней свободной опоры балок и у свободного конца консолей при отсутствии у продольной арматуры специальных анкеров.

Кроме того, расчет наклонных сечений на дей­ствие момента производится в местах резкого из­менения конфигурации элементов (подрезок, узлов и т. п.).

Расчет наклонных сечений на действие момента допускается не производить при выполнении усло­вий (71) и (72) с умножением их правых частей на 0,8 и при значении с не более 0,8cmax.

3.44. При пересечении наклонного сечения с про­дольной растянутой арматурой, не имеющей анке­ров, в пределах зоны анкеровки расчетное сопро­тивление этой арматуры Rs снижается путем умно­жения на коэффициент условий работы gs5, равный:

 

                                                       (80)

 

где lx расстояние от конца арматуры до точки пересечения наклонного сечения с про­дольной арматурой;

lan — длина зоны анкеровки, определяемая по формуле

 

                                         (81)

 

здесь wan, Dlan коэффициенты, принимаемые равными:

для крайних свободных опор балок wan = 0,5, Dlan = 8;

для свободных концов кон­солей wan = 0,7; Dlan = 11.

В случае применения гладких стержней коэффи­циент wan принимается равным для опор балок и концов консолей соответственно 0,8 и 1,2.

При наличии на крайних свободных опорах косвенной или поперечной арматуры, охватыва­ющей без приваривания продольную арматуру, коэффициент wan делится на величину 1 +12mv, а коэффициент Dlan уменьшается на величину 10sb/Rb, здесь mv объемный коэффициент ар­мирования, определяемый для сварных сеток по формуле (99), для хомутов по формуле  (где Asw и s соответственно площадь сечения огибающего хомута и его шаг), в любом случае значение mv принимается не более 0,06.

Напряжение сжатия бетона на опоре sb опре­деляется делением опорной реакции на площадь опирания элемента и принимается не более 0,5Rb.

Длина lan принимается для свободных концов консолей не менее 20d или 250 мм, при этом длину анкеровки lan можно определить с учетом данных табл. 45 (поз. 1).

В случае приваривания к продольным растя­нутым стержням поперечной или распредели­тельной арматуры учитываемое в расчете уси­лие в продольной арматуре RsАs увеличивается на величину

 

                                                (82)

 

принимаемую не более  

В формуле (82):

пw - число приваренных стержней по длине lx;

jw коэффициент, принимаемый по табл. 22;

dw диаметр приваренных стержней.

 

Таблица 22

 

dw

6

8

10

12

14

jw

200

150

120

100

80

 

Окончательно значение RsАs принимается не бо­лее значения RsАs, определенного без учета gs5 и Nw.

3.45. Для свободно опертых балок невыгодней­шее наклонное сечение начинается от грани опоры и имеет длину проекции с для балок с постоянной высотой сечения, равную:

 

                                    (83)

 

но не более максимальной длины приопорного участка, за пределами которого выполняется усло­вие (72) с умножением правой части на 0,8 и при значении с не более 0,8cmax.

В формуле (83):

Q поперечная сила в опорном сечении;

Fi, q нагрузки соответственно сосредоточен­ная и равномерно распределенная в пре­делах наклонного сечения;

As,inc площадь сечения отгибов, пересекающих наклонное сечение;

q угол наклона отгибов к продольной оси элемента;

qsw то же, что в формуле (55).

Если значение с, определенное с учетом сосредо­точенной силы Fi, будет меньше расстояния от грани опоры до силы Fi, а определенное без учета силы Fi больше этого расстояния, за значение с следует принимать расстояние до силы Fi.

Если в пределах длины с хомуты изменяют свою интенсивность с qsw1 у начала наклонного сечения на qsw2, значение с определяется по формуле (83) при qsw = qsw2 и при уменьшении числителя на ве­личину (qsw1 qsw2)l1 (где l1 длина участка с интенсивностью хомутов qsw1).

Для балок, нагруженных равномерно распре­деленной нагрузкой q, с постоянной интенсивностью хомутов без отгибов условие (77) можно заменить условием

 

                          (84)

 

где   Q поперечная сила в опорном сечении;

М0 момент в сечении по грани опоры.

Для консолей, нагруженных сосредоточенными силами (черт. 22, б), невыгоднейшее наклонное сечение начинается от мест приложения сосредото­ченных сил вблизи свободного конца и имеет длину проекции с для консолей с постоянной высотой, равную:

 

                                           (85)

 

но не более расстояния от начала наклонного сече­ния до опоры (здесь Q1 поперечная сила в начале наклонного сечения).

Для консолей, нагруженных только равномерно распределенной нагрузкой q, невыгоднейшее на­клонное сечение заканчивается в опорном сечении и имеет длину проекции с, равную:

 

                                          (86)

 

при этом, если с < l lan, расчет наклонного сече­ния можно не производить.

В формуле (86):

Аs площадь сечения арматуры, доводимой до свободного конца;

zs см. п. 3.42; значение zs определяется для опорного сечения;

lan длина зоны анкеровки (см. п. 3.44).

Для элементов с высотой сечения, увеличива­ющейся с увеличением изгибающего момента, при определении длины проекции невыгоднейшего сечения по формулам (83) или (85) чис­лители этих формул уменьшаются на величину RsAstgb при наклонной сжатой грани и на величи­ну RsAssinb при наклонной растянутой грани (где b) угол наклона грани к горизонтали) .

3.46. Для обеспечения прочности наклонных сече­ний на действие изгибающего момента в элементах постоянной высоты с хомутами продольные рас­тянутые стержни, обрываемые в пролете, должны заводиться за точку теоретического обрыва (т. е. за нормальное сечение, в котором внешний мо­мент становится равным несущей способности сечения без учета обрываемых стержней; черт. 23) на длину не менее величины w, определяемой по формуле

 

                                  (87)

 

где  Q — поперечная сила в нормальном сечении, проходящем через точку теоретиче­ского обрыва;

As,inc, q обозначения те же, что в формуле (83);

d диаметр обрываемого стержня;

qsw см. п. 3.31.

Для балок с наклонной сжатой гранью числитель формулы (87) уменьшается на RsAstgb, а для балок с наклонной растянутой гранью на RsAssinb (где b угол наклона грани к горизонтали). Кроме того, должны быть учтены требования п. 5.44.

Для элементов без поперечной арматуры зна­чение w принимается равным 10d, при этом место теоретического обрыва должно находиться на уча­стке элемента, на котором выполняется усло­вие (72), с умножением правой части на 0,8 и при значении с не более 0,8сmax.

 

 

Черт. 23. Обрыв растянутых стержней в пролете

 

1 — точка теоретического обрыва; 2 — эпюра М

 

3.47. Для обеспечения прочности наклонных сече­ний на действие изгибающего момента начало отгиба в растянутой зоне должно отстоять от нор­мального сечения, в котором отгибаемый стержень полностью используется по моменту, не менее чем на h0/2, а конец отгиба должен быть расположен не ближе того нормального сечения, в котором отгиб не требуется по расчету.

 

РАСЧЕТ НАКЛОННЫХ СЕЧЕНИЙ В ПОДРЕЗКАХ

 

3.48. Для элементов с резко меняющейся высо­той сечения (например, для балок и консолей, име­ющих подрезки), производится расчет по попереч­ной силе для наклонных сечений, проходящих у опоры консоли, образованной подрезкой (черт. 24), согласно пп. 3.31—3.39, при этом в расчетные формулы вводится рабочая высота h01 короткой кон­соли, образованной подрезкой.

 

 

Черт. 24.   Невыгодиейшие наклонные сечения

в эле­менте с подрезкой

 

1 наклонная сжатая по­лоса; 2 при расчете по поперечной силе;

3 то же, по изгибающему моменту; 4 то же, по изгибающему

моменту вне подрезки

 

Хомуты, необходимые для обеспечения прочно­сти наклонного сечения, следует устанавливать за конец подрезки на участке длиной не менее w0, определяемой по формуле (88).

3.49. Для свободно опертых балок с подрезками должен производиться расчет на действие изгиба­ющего момента в наклонном сечении, проходящем через входящий угол подрезки (см. черт. 24), согласно пп. 3.423.45. При этом продольная рас­тянутая арматура в короткой консоли, образо­ванной подрезкой, должна быть заведена за ко­нец подрезки на длину не менее lan (см. п. 5.44) и не менее величины w0, равной:

 

                  (88)

 

где Q1 поперечная сила в нормальном сечении у конца подрезки;

Asw1 —площадь сечения дополнительных хому­тов, расположенных у конца подрезки на участке длиной не более h01/4 и не учитываемых при определении интен­сивности хомутов qsw у подрезки;

As,inc площадь сечения отгибов, проходящих через входящий угол подрезки;

a0 расстояние от опоры консоли до конца подрезки;

d диаметр обрываемого стержня.

Хомуты и отгибы, установленные у конца под­резки, должны удовлетворять условию

 

                         (89)

 

где h01, h0 рабочая высота соответственно в ко­роткой консоли подрезки и в балке вне подрезки.

Если нижняя арматура элемента не имеет анкеров, должна быть также проверена, согласно пп. 3.42—3.45, прочность наклонного сечения, расположенного вне подрезки и начинающегося за указанными хомутами на расстоянии не менее h0h01 от торца (см. черт. 24). При этом в расчете не учитывается продольная арматура короткой консоли, а длина проекции с принимается не менее расстояния от начала наклонного сечения до конца указанной арматуры. Кроме того, длина анкеровки lan для нижней арматуры элемента принимается как для свободных концов консолей.

Расчет короткой консоли подрезки производится согласно пп. 3.99 и 3.100, принимая направление наклонной сжатой полосы от наружного края пло­щадки опирания до равнодействующей усилий в дополнительных хомутах площадью сечения Asw1 на уровне сжатой арматуры балок, т. е. при  (где lsup см. п. 3.99, ax см. черт. 24), при этом в формуле (207) коэф­фициент 0,8 заменяется на 1,0.

 

ПРИМЕРЫ РАСЧЕТА

 

Расчет наклонных сечений

на действие поперечной силы

 

Пример 13. Дано: железобетонная плита пере­крытия с размерами поперечного сечения по черт. 25; бетон тяжелый класса В15 (Rb = 7,7 МПа и Rbt = 0,67 МПа при gb2 = 0,9; Eb = 20,5 · 103 МПа); ребро плиты армировано плоским сварным кар­касом с поперечными стержнями из арматуры класса А-III, диаметром 8 мм (Asw = 50,3 мм2; Rsw = 285 МПа; Es = 2 · 105 МПа), шагом s = 100 мм; временная эквивалентная нагрузка v = 18 кН/м; нагрузка от собственного веса плиты и пола g = 3,9 кН/м; поперечная сила на опоре Qmax = 62 кН.

Требуется проверить прочность наклонной поло­сы ребра между наклонными трещинами, а также прочность наклонных сечений по поперечной силе.

 

 

Черт. 25. К примеру расчета 13

 

Расчет. h0 = 350 58 = 292 мм. Прочность наклонной полосы проверим из условия (47).

Определим коэффициенты jw1 и jb1:

 

 

 

отсюда jw1 = 1 + 5amw = 1 + 5 · 9,76 · 0,0059 = 1,29 < 1,3;

для тяжелого бетона b = 0,01;

 

 

тогда          

 

т. е. прочность наклонной полосы обеспечена.

Прочность наклонного сечения по поперечной силе проверим из условия (50).

Определим величины Mb и qsw:

 

 (см. табл. 21);

 

так как , принимаем b = 150 мм, тогда:

 

 

 

 Н/мм (кН/м).

 

Определим значение Qb,min, принимая jb3 = 0,6:

 

 

Поскольку

условие (57) выполняется, и, следовательно, значе­ние Мb не корректируем.

Согласно п. 3.32 определим длину проекции невыгоднейшего наклонного сечения с:

 

 кН/м (Н/мм),

 

поскольку 0,56qsw = 0,56 · 143 == 80 кН/м > q1 = 12,9 кН/м, значение с определим только по формуле

 

 м.

 

Тогда       

 

кН.

 

Длина проекции наклонной трещины равна:

 

 

Поскольку c0 = 0,288 < h0 = 0,292 м, принимаем c0 = h0 = 0,292 м, тогда Qsw = qswc0 = 143 · 0,292 = 41,8 кН.

Проверим условие (50):

 

 

 

т. е. прочность наклонного сечения по поперечной силе обеспечена. Кроме того, должно выполняться требование п. 3.29:

 

 

Условия п. 5.69 s < h/2 = 350/2 = 175 мм и s < 150 мм также выполняются.

Пример 14. Дано: свободно опертая железобетон­ная балка перекрытия пролетом l = 5,5 м; времен­ная равномерно распределенная эквивалентная нагрузка на балку v = 36 кН/м; постоянная нагрузка g = 14 кН/м; размеры поперечного сечения b = 200 мм, h = 400 мм, h0 = 370 мм; бетон тяжелый класса В15 (Rb = 7,7 МПа; Rbt = 0,67 МПа при gb2 = 0,9); хомуты из арматуры класса А-I (Rsw = 175 МПа).

Требуется определить диаметр и шаг хомутов у опоры, а также выяснить, на каком расстоянии от опоры и как может быть увеличен шаг хомутов.

Расчет. Наибольшая поперечная сила в опор­ном сечении равна:

 

 кН,

 

где q = v + g = 36 +14 = 50 кН/м.

Определим требуемую интенсивность хомутов приопорного участка согласно п. 3.33б.

Из формулы (52) при jf = 0 и jb2 = 2,0 (см. табл. 21) получим

 

 

Согласно п. 3.32,

 

 кН/м (Н/мм);

 

 кН.

 

Так как

 

интенсивность хомутов определим по формуле (63) :

 

 кН/м (Н/мм).

 

При этом, поскольку

 

Н/мм < 130 Н/мм,

 

оставляем qsw = 130 Н/мм.

Согласно п. 5.69, шаг s1 у опоры должен быть не более h/2 = 200 и 150 мм, а в пролете  = 300 и 500 мм. Максимально допустимый шаг у опоры, согласно п. 3.29, равен:

 

 мм.

 

Принимаем шаг хомутов у опоры s1 = 150 мм, а в пролете 2s1 = 300 мм, отсюда

 

 мм2.

 

Принимаем в поперечном сечении два хомута диаметром по 10 мм (Аsw= 157 мм2).

Таким образом, принятая интенсивность хомутов у опоры и в пролете балки будет соответственно равна:

 

 Н/мм;

 

 Н/мм.

 

Проверим условие (57), вычислив Qb,min:

 

 H.

 

Тогда  

 

 

Следовательно, значения qsw1 и qsw2 не коррек­тируем.

Определим, согласно п. 3.34, длину участка l1 с интенсивностью хомутов qsw1. Так как qsw1 qsw2 = qsw2 = 91,6 H/мм > q1 = 32 Н/мм, значение l1 вычислим по формуле

 

 

(здесь  мм).

Принимаем длину участка с шагом хомутов s1 = 150 мм равной 1,64 м.

Пример 15. Дано: железобетонная балка покры­тия, нагруженная сосредоточенными силами, как показано на черт. 26, а; размеры поперечного сечения по черт. 26, б, бетон тяжелый класса В15 (Rbt = 0,67 МПа при gb2 = 0,9); хомуты из армату­ры класса А-I (Rsw = 175 МПа).

Требуется определить диаметр и шаг хомутов, а также выяснить, на каком расстоянии и как может быть увеличен шаг хомутов.

Расчет. Сначала определим, согласно п. 3.31, величину Mb: