регистрация компании дать объявление быстрый поиск лента публикаций восстановление доступа о портале
    
Строительный портал СтройПлан.ру
Подбор проекта Новости отраслиПубликации
 
КОРЗИНА (0)  
 >>>  ПОИСК ДОКУМЕНТОВ  
  Дополнительные материалы  [ + развернуть]  
Утвержден: Росавтодор (17.07.2002)
Дата введения: 17 июля 2002 г.
скачать бесплатно "Руководство по оценке ровности дорожных покрытий толчкомером"

МИНИСТЕРСТВО ТРАНСПОРТНОГО СТРОИТЕЛЬСТВА
ГОСУДАРСТВЕННЫЙ ВСЕСОЮЗНЫЙ ДОРОЖНЫЙ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
МИНТРАНССТРОЯ (СОЮЗДОРНИИ)

РУКОВОДСТВО
ПО СТРОИТЕЛЬСТВУ
ДОРОЖНЫХ АСФАЛЬТОБЕТОННЫХ ПОКРЫТИЙ

МОСКВА «ТРАНСПОРТ» 1978

Руководство по строительству дорожных асфальтобетонных покрытий разработано в развитие ГОСТ 9128-76 «Смеси асфальтобетонные, аэродромные и асфальтобетон. Технические условия», ГОСТ 12801-77 «Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Методы испытаний» и главы СНиП III-40-78 «Автомобильные дороги. Правила производства и приемки работ». В нем приведены сведения, детализирующие правила производства работ по строительству асфальтобетонных покрытий и приготовлению асфальтобетонных смесей, область применения различных асфальтобетонов. Описаны современные конструкции дорожных одежд с асфальтобетонными покрытиями, методы испытаний асфальтобетонов, принципы проектирования асфальтобетонных смесей, применяемые добавки поверхностно-активных веществ и полимеров, способы физико-химической активации используемых минеральных материалов.

Руководство одобрено Главным техническим управлением Минтрансстроя и предназначено для инженерно-технических работников.

ПРЕДИСЛОВИЕ

За время, прошедшее после выхода в свет «Инструкции по строительству дорожных асфальтобетонных покрытий» - ВСН 93-73, утвержден ГОСТ 9128-76 «Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия». Помимо того, что новый ГОСТ объединяет требования ко всем видам асфальтобетонных смесей, в эти требования внесены уточнения и изменения.

За прошедший период введены в действие также новые ГОСТы на методы испытаний асфальтобетона, на битумы и на некоторые минеральные материалы, используемые в асфальтобетоне. Расширен опыт применения новых конструкций дорожных одежд, проведены исследования, связанные с совершенствованием технологии строительства и повышением качества асфальтобетонных покрытий.

Все это обусловило необходимость разработки «Руководства по строительству дорожных асфальтобетонных покрытий». В нем детализируются правила производства работ по приготовлению асфальтобетонных смесей, применяемых в горячем, теплом и холодном состоянии, и строительству дорожных асфальтобетонных покрытий, изложенные в главе СНиП III-40-78. «Автомобильные дороги. Правила производства и приемки работ». Наряду с этим в Руководстве изложены сведения, относящиеся к материалам, применяемым для производства асфальтобетонных смесей; современным конструкциям дорожных одежд с асфальтобетонными покрытиями; способам введения в асфальтобетонные смеси добавок поверхностно-активных веществ и полимеров; методам производства и применения активированных минеральных материалов; способам обеспечения надлежащей шероховатости асфальтобетонных покрытий; методам испытаний асфальтобетона и способам оценки эксплуатационных свойств готовых покрытий. Приведен пример проектирования состава асфальтобетонной смеси. Руководство разработано взамен инструкции ВСН 93-73.

Руководство составили сотрудники Союздорнии: доктора техн. наук Л.Б. Гезенцвей и А.А. Калерт, кандидаты техн. наук Н.В. Горелышев, К.Я. Лобзова, Э.А. Казарновская, И.А. Плотникова, Е.Н. Козлова, В.Н. Сотникова, Ю.Н. Питецкий, М. И. Вейнман, Л.М. Гохман, Б.М. Слепая, Д.И. Гегелия, Н.Б. Перлова, В.А. Астров, А.Ю. Гольштейн, В.М. Юмашев, инженеры М.Б. Сокальская, Н.С. Ценюга, Д.С. Шемонаева, Б.В. Маркин, Ю.А. Никаноров.

Общее редактирование выполнено Л.Б. Гезенцвеем.

1. ОПРЕДЕЛЕНИЕ, КЛАССИФИКАЦИЯ И ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К АСФАЛЬТОБЕТОНУ

1.1. Асфальтобетоном называется материал, который получается после уплотнения асфальтобетонной смеси, приготовленной путем смешения в смесителях в нагретом состоянии щебня (гравия) различной крупности, природного или дробленого песка, минерального порошка и нефтяного дорожного битума, взятых в определенных соотношениях. Свойства асфальтобетонных смесей и асфальтобетона должны соответствовать требованиям ГОСТ 9128-76.

1.2. В зависимости от вида каменного материала асфальтобетоны подразделяются на: щебеночные, состоящие из щебня, песка, минерального порошка и битума; гравийные, состоящие из гравия, песка или песчано-гравийного материала, минерального порошка и битума; песчаные, состоящие из песка, минерального порошка и битума.

1.3. Асфальтобетоны в зависимости от вязкости применяемого в них битума и температуры асфальтобетонных смесей при укладке в конструктивный слой подразделяются на горячие, теплые и холодные.

Горячие асфальтобетонные смеси приготовляют с применением вязких нефтяных дорожных битумов марок БНД 90/130, БНД 60/90, БНД 40/60, БН 90/130, БН 60/90 согласно ГОСТ 22245-76. Температура горячих смесей при укладке должна быть не ниже 100 - 120° С. Формирование покрытия из таких смесей закапчивается в основном после остывания уплотненного слоя асфальтобетона.

Теплые асфальтобетонные смеси приготовляют с применением вязких нефтяных дорожных битумов марок БНД 200/300, БНД 130/200, БН 200/300 и БН 130/200 согласно ГОСТ 22245-76, а также с применением жидких битумов марок БГ 70/130 и СГ 130/200 согласно ГОСТ 11955-74. Температура теплых смесей при укладке должна быть не ниже 70 - 80 °С. Продолжительность формирования покрытия из таких смесей может колебаться от нескольких часов до нескольких недель в зависимости от вида битума (разжиженного или вязкого) и минерального порошка (активированного или неактивированного), погодных условий, температуры смеси при укладке, а также от состава и интенсивности движения автомобилей, их грузоподъемности.

Холодные асфальтобетонные смеси приготовляют с применением жидкого битума, густеющего со средней скоростью, марки СГ 70/130 или медленногустеющего марки МГ 70/130 согласно ГОСТ 11955-74.

Холодные асфальтобетонные смеси до их укладки в покрытие можно хранить на складе до 4 - 8 мес (в зависимости от класса применяемого жидкого битума). Холодные смеси укладывают при температуре окружающего воздуха не ниже 5 °С весной и не ниже 10 °С осенью.

Формирование покрытия из таких смесей протекает медленно (20 - 40 сут) и зависит от класса жидкого битума, вида минерального порошка (активированного или неактивированного), погодных условий, интенсивности движения автомобилей и их грузоподъемности.

Применение активированного минерального порошка способствует сокращению срока формирования покрытий из холодного асфальтобетона до 10 - 15 сут.

1.4. Горячие и теплые асфальтобетоны (щебеночные и гравийные) в зависимости от наибольшего размера зерен щебня (гравия) подразделяются на: крупнозернистые с зернами размером до 40 мм; среднезернистые - до 20 мм; мелкозернистые с зернами размером до 15 (10) мм.

Песчаные асфальтобетоны содержат зерна размером до 5 мм.

1.5. Максимальная крупность щебня не должна превышать 0,6 конструктивной толщины верхнего слоя покрытия в уплотненном состоянии и 0,75 нижнего слоя покрытия.

1.6. Горячие и теплые асфальтобетоны с учетом их назначения подразделяются на:

а) плотный асфальтобетон, обладающий остаточной пористостью 2,5 - 5 %, применяемый в верхнем слое покрытия, обязательно содержащий минеральный порошок;

б) пористый асфальтобетон, обладающий остаточной пористостью 5 - 10 %, применяемый в нижнем слое покрытия и в основании.

Таблица 1.1

Типы асфальтобетона в зависимости от содержания щебня или песка

Тип асфальтобетона

Количество щебня (гравия) или песка в асфальтобетонной смеси

 

Горячие и теплые

А

50 - 65 % щебня

Б

35 - 50 %       »     (гравия)

в

20 - 35 %       »           »

г

Не менее 33 % фракции 1,25 - 5 мм в дробленом песке

Д

Не менее 14 % фракции 1,25 - 5 мм в природном песке (или в смеси природного и дробленого песков)

 

Холодные

Бх

35 - 50 % щебня (гравия)

Вх

20 - 35 %       »         »

Дх

Не менее 33 % фракции 1,25 - 5 мм в дробленом песке

 

Не менее 15 % фракции 1,25 - 5 мм в природном песке (или в смеси природного и дробленого песков)

Таблица 1.2

Минеральные материалы для горячих и теплых асфальтобетонов с учетом их марки (извлечение из ГОСТ 9128-76)

Марка асфальтобетона

Тип асфальтобетона

Минеральные материалы

Щебень (гравий)

Песок

Минеральный порошок

Наименование горных пород и материалов

Марка по прочности или класс, не ниже

I

А, Б

Изверженные и метаморфические

1200

Природный и дробленый с Мк не менее 2, а также природный активированный с Мк не менее 1,7

Преимущественно активированный, а также неактивированный согласно ГОСТ 16557-71

В

То же

1000

А, Б

Осадочные некарбонатные

1000

В

Осадочные некарбонатные

800

В

Осадочные карбонатные

1000

Б

Шлаки металлургические

1

В

То же

2

Б

Щебень из гравия

Др. 8

В

То же

Др. 12

 

Г

-

-

Дробленый с Мк не менее 2 из горных пород, применяемых в виде щебня в I марке типа А

То же

II

А, Б

Изверженные и метаморфические

1000

Природный и дробленый с Мк не менее 2, а также природный активированный с Мк не менее 1,7

Активированный и неактивированный согласно ГОСТ 16557-71, а также тонкомолотые основные металлургические шлаки

В

То же

800

А

Осадочные некарбонатные

1000

Б

То же

800

В

»

600

Б

Осадочные карбонатные

800

В

То же

600

А, Б

Шлаки металлургические

2

В

То же

3

А

Щебень из гравия

Др. 8

Б, В

То же

Др. 12

 

Г

-

-

Дробленый с Мк не менее 2 из горных пород, применяемых в виде щебня во II марке типа А

То же

 

Д

-

 

Природный с Мк не менее 2 или смесь природного с дробленым

»

III

Б, В

Изверженные и метаморфические

800

Природный с Мк не менее 1, а также дробленый

Тонкомолотые карбонатные горные породы согласно ГОСТ 16557-71 и основные металлургические шлаки, порошкообразные отходы промышленности

Б

Осадочные карбонатные и некарбонатные

800

В

То же

600

Б, В

Шлаки металлургические

3

Б

Щебень из гравия и гравий

Др. 12

В

То же

Др. 16

Д

-

-

Природный с Мк не менее 1,0

То же

IV

Б

Изверженные и метаморфические

800

То же

Тонкомолотые карбонатные и некарбонатные горные породы, порошкообразные отходы промышленности

В

То же

600

Б

Осадочные карбонатные и некарбонатные

600

В

То же

300

Б

Шлаки металлургические

3

В

То же

4

Б

Щебень из гравия и гравий

Др. 16

В

То же

Др. 24

Д

-

-

»

То же

Примечание. Допускается применять в асфальтобетонах низких марок минеральные материалы, предусмотренные для асфальтобетонов высших марок при условии технико-экономической целесообразности.

Таблица 1.3

Минеральные материалы для холодных асфальтобетонов в зависимости от марки асфальтобетона (извлечение из ГОСТ 9128-76)

Марка асфальтобетона

Класс битума

Тип асфальтобетона

Щебень (гравий)

Песок

Минеральный порошок

Наименование горных пород и материалов

Марка по прочности или класс, не ниже

I

СГ

Бх

Изверженные и метаморфические

1000

Природный и дробленый с Мк не менее 2, а также природный активированный с Мк не менее 1,7

Преимущественно активированный, а также неактивированный согласно ГОСТ 16557-71, тонкомолотые основные металлургические шлаки

Вх

То же

800

Бх

Осадочные карбонатные и некарбонатные

800

Вх

То же

600

Бх

Шлаки металлургические

1

Вх

То же

2

Бх

Щебень из гравия

Др. 8

Вх

То же

Др. 12

Г

СГ

Дх

-

-

Дробленый с Мк не менее 2, природный активированный с Мк не менее 1,7 и их смесь

Преимущественно активированный, а также неактивированный согласно ГОСТ 16557-71, тонкомолотые основные металлургические шлаки

II

СГ

Бх

Изверженные и метаморфические

800

Природный и дробленый с Мк не менее 2, а также природный активированный с Мк не менее 1,7

Неактивированный и активированный согласно ГОСТ 16557-71, тонкомолотые основные металлургические шлаки

МГ

Вх

То же

600

 

Бх

Осадочные карбонатные и некарбонатные

800

 

Вх

То же

600

 

Бх

Шлаки металлургические

2

 

Вх

То же

3

 

Бх

Щебень из гравия и гравий

Др. 12

 

Вх

То же

Др. 16

 

Дх

-

-

То же

То же

Примечание. Допускается применение в асфальтобетонах низких марок минеральных материалов, предусмотренных для асфальтобетонов высших марок, при условии технико-экономической целесообразности.

Таблица 1.4

Показатели физико-механических свойств плотного горячего и теплого асфальтобетона (извлечение из ГОСТ 9128-76)

Показатели

Нормы по маркам асфальтобетонов

I

II

III

IV

Пористость минерального остова, % по объему для асфальтобетонов типов:

 

 

 

 

А и Б

15 - 19

15 - 19

15 - 19

15 - 19

В и Г

18 - 22

18 - 22

18 - 22

18 - 22

Д

-

-

Не более 22

Не более 22

Остаточная пористость, % по объему

2,5 - 4,5

2,5 - 4,5

2,5 - 4,5 / 3,0 - 5,0

2,5 - 4,5 / 3,0 - 5,0

Водонасыщение, % по объему для асфальтобетонов типов:

 

 

 

 

А

2,0 - 4,5

2,0 - 4,5

-

-

Б и Г

1,5 - 3,5

1,5 - 3,5

1,5 - 3,5 / 1,5 - 4,0

1,5 - 3,5 / 1,5 - 4,0

В и Д

1,5 - 3,0

1,5 - 3,0

1,0 - 3,0 / 1,5 - 4,0

1,0 - 3,0 / 1,5 - 4,0

Набухание, % по объему, не более

0,5

1,0

1,0

1,5

Предел прочности при сжатии, Па (кгс/см2), не менее, при температурах:

 

 

 

 

а) 20 °С для всех типов асфальтобетонов

24 × 105 (24) / 20 × 105 (20)

22 × 105 (22) / 18 × 105 (18)

20 × 105 (20) / 18 × 105 (18)

16 × 105 (16) / 14 × 105 (14)

б) 50 °С для асфальтобетонов типов:

 

 

 

 

А

9 × 105 (9) / 8 × 105 (8)

8 × 105 (8) / 7 × 105 (7)

-

-

Б и В

10 × 105 (10) / 9 × 105 (9)

9 × 105 (9) / 8 × 105 (8)

9 × 105 (9) / 8 × 105 (8)

8 × 105 (8) / 6 × 105 (6)

Г

14 × 105 (14) / 10 × 105 (10)

12 × 105 (12) / 9 × 105 (9)

-

-

Д

-

12 × 105 (12) / 9 × 105 (9)

10 × 105 (10) / 8 × 105 (8)

8 × 105 (8) / 6 × 105 (6)

в) 0 °С для всех типов горячих смесей, не более

120 × 105 (120)

120 × 105 (120)

120 × 105 (120)

120 × 105 (120)

Коэффициент водостойкости, не менее

0,9

0,85

0,8 / 0,7

0,7 / 0,6

Коэффициент водостойкости, при длительном водонасыщении (15 сут), не менее

0,85 / 0,80

0,75 / 0,60

0,70 / 0,60

0,60 / 0,50

Сцепление битума с минеральной частью асфальтобетонной смеси

Выдерживает (для всех марок)

Примечания. 1. В районах с избыточным увлажнением следует придерживаться нижних пределов водонасыщения и остаточной пористости.

2. В числителе приведены показатели свойств для горячих асфальтобетонов, в знаменателе - для теплых.

3. Для районов, относящихся к IV и V дорожно-климатическим зонам, показатель прочности при t = 50 °С увеличивается для асфальтобетонов с применением щебня на 20 %, с применением гравия и песка - на 30 %.

4. Для районов, относящихся к I и II дорожно-климатическим зонам, показатель прочности при t = 0 °С не должен превышать 90 × 105 Па (90 кгс/см2).

Таблица 1.5

Показатели физико-механических свойств холодного асфальтобетона (извлечение из ГОСТ 9128-76)

Показатели

Нормы по маркам асфальтобетонов

I

II

Пористость минерального остова, % по объему, не более, для асфальтобетонов типов:

 

 

Бх

18

18

Вх

20

20

Дх

21

21

Остаточная пористость, % по объему

6 - 10

6 - 10

Водонасыщение, % по объему

5 - 9

5 - 9

Набухание, % по объему, не более

1,2

2,0

Предел прочности при сжатии, Па (кгс/см2), не менее, при температуре 20 °С:

 

 

а) до прогрева асфальтобетона

 

 

водонасыщенного

11 × 105 (11) / 12 × 105 (12)

7 × 105 (7) / 8 × 105 (8)

сухого

15 × 105 (15) / 17 × 105 (17)

10 × 105 (10) / 12 × 105 (12)

б) после прогрева асфальтобетона

 

 

водонасыщенного

16 × 105 (16) / 18 × 105 (18)

10 × 105 (10) / 12 × 105 (12)

сухого

18 × 105 (18) / 20 × 105 (20)

13 × 105 (13) / 15 × 105 (15)

Коэффициент водостойкости, не менее:

 

 

а) до прогрева

0,75

0,60

б) после прогрева

0,9

0,80

Коэффициент водостойкости при длительном водонасыщении, не менее:

 

 

а) до прогрева

0,5

0,4

б) после прогрева

0,75

0,65

Слеживаемость по числу ударов, не более

10

10

Сцепление битума с минеральной частью асфальтобетонной смеси

Выдерживает

Примечание. В числителе приведены показатели прочности для мелкозернистых, в знаменателе для песчаных асфальтобетонов.

Таблица 1.6

Дополнительно рекомендуемые показатели физико-механических свойств горячих и теплых асфальтобетонов для верхнего слоя покрытия

Показатели

Нормы по видам и маркам асфальтобетонов

Горячих

Теплых

I

II

I

II

Набухание при длительном водонасыщении, % объема, не более

1,5

1,8

1,8

2,0

Испытания по методу Маршалла:

 

 

 

 

а) устойчивость при 60 °С, Н (кгс), не менее, для смесей типов:

 

 

 

 

А и Б

6000

(600)

5000

(500)

5000

(500)

4000

(400)

В и Г

5000

(500)

4500

(450)

4000

(400)

4000

(400)

Д

-

4000

(400)

-

3500

(350)

б) показатель условной пластичности 1/10 мм

£ 40

£ 40

25 - 40

25 - 40

в) показатель условной жесткости, Н/мм (кгс/мм), не менее, для смесей типов:

 

 

 

 

А и Б

2000

(200)

1700

(170)

1700

(170)

1500

(150)

В и Г

1700

(170)

1700

(170)

1500

(150)

1500

(150)

Д

-

1300

(130)

-

1300

(130)

Примечания. 1. Дополнительно рекомендуемые показатели свойств асфальтобетонов являются ориентировочными и не должны служить браковочным признаком при оценке качества выпускаемых смесей или асфальтобетона из покрытия.

2. Для горячих и теплых асфальтобетонов III и IV марок и для холодных асфальтобетонов показатели, приведенные в таблице, не нормируются, а определяются для накопления данных.

Таблица 1.7

Показатели свойств пористого асфальтобетона (извлечение из ГОСТ 9128-76)

Показатели

Норма

Пористость минерального остова, % по объему, не более

24

Остаточная пористость, % по объему

5 - 10

Водонасыщение, % по объему

3 - 9

Набухание, % по объему, не более

1,5

Таблица 1.8

Зерновой (гранулометрический) состав минеральной части горячих и теплых асфальтобетонных смесей и содержание в них битума (извлечение из ГОСТ 9128-76)

Наименование асфальтобетонных смесей и тип асфальтобетона

Содержание зерен минерального материала, %, мельче данного размера, мм

40

20

15

10

5

2,5

1,25

0,63

0,315

0,14

0,071

Примерный расход битума, % от массы минеральной части

1

2

3

4

5

6

7

8

9

10

11

12

13

I. Асфальтобетонные смеси для плотного асфальтобетона, применяемого в верхнем слое покрытия

 

 

 

 

 

 

 

 

 

 

 

 

 

Непрерывная гранулометрия

Среднезернистые типов:

 

 

 

 

 

 

 

 

 

 

 

 

А

-

95 - 100

78 - 85

60 - 70

35 - 50

24 - 38

17 - 28

12 - 20

9 - 15

6 - 11

4 - 10

5,0 - 6,0

Б

-

95 - 100

85 - 91

70 - 80

50 - 65

38 - 52

28 - 39

20 - 29

14 - 22

9 - 16

6 - 12

5,0 - 6,0

В

-

95 - 100

91 - 96

80 - 90

65 - 80

52 - 66

39 - 53

29 - 40

20 - 28

12 - 20

8 - 14

6,0 - 7,0

Мелкозернистые типов:

 

 

 

 

 

 

 

 

 

 

 

 

А

-

-

95 - 100

63 - 75

35 - 50

24 - 38

17 - 28

12 - 20

9 - 15

6 - 11

4 - 10

5,0 - 6,0

А

-

-

-

95 - 100

35 - 50

24 - 38

17 - 28

12 - 20

9 - 15

6 - 11

4 - 10

5,0 - 6,0

Б

-

-

95 - 100

75 - 85

50 - 65

38 - 52

28 - 39

20 - 29

14 - 22

9 - 16

6 - 12

5,5 - 7,0

Б

-

-

-

95 - 100

50 - 65

38 - 52

28 - 39

20 - 29

14 - 22

9 - 16

6 - 12

5,5 - 7,0

В

-

-

95 - 100

85 - 93

65 - 80

52 - 66

39 - 53

29 - 40

20 - 28

12 - 20

8 - 14

6,0 - 7,0

В

-

-

-

95 - 100

65 - 80

52 - 66

39 - 53

29 - 40

20 - 28

12 - 20

8 - 14

6,0 - 7,0

Песчаные типов:

 

 

 

 

 

 

 

 

 

 

 

 

Г

-

-

-

-

95 - 100

68 - 83

45 - 67

28 - 50

18 - 35

11 - 23

8 - 14

7,0 - 9,0

Д

-

-

-

-

95 - 100

74 - 93

53 - 86

37 - 75

27 - 55

17 - 33

10 - 16

7,0 - 9,0

 

Прерывистая гранулометрия

Среднезернистые типов:

 

 

 

 

 

 

 

 

 

 

 

 

А

-

95 - 100

78 - 85

60 - 70

35 - 50

35 - 50

35 - 50

35 - 50

17 - 28

8 - 15

4 - 10

5,0 - 6,5

Б

-

95 - 100

85 - 91

70 - 80

50 - 65

50 - 65

50 - 65

50 - 65

28 - 40

14 - 23

6 - 12

5,0 - 6,5

Мелкозернистые типов:

 

 

 

 

 

 

 

 

 

 

 

 

-

-

95 - 100

63 - 75

35 - 50

35 - 50

35 - 50

35 - 50

17 - 28

8 - 15

4 - 10

5,0 - 6,5

А

-

-

-

95 - 100

35 - 50

35 - 50

35 - 50

35 - 50

17 - 28

8 - 15

4 - 10

5,0 - 6,5

Б

-

-

95 - 100

75 - 80

50 - 65

50 - 65

50 - 65

50 - 65

28 - 40

14 - 23

6 - 12

5,5 - 7,0

Б

-

-

-

95 - 100

50 - 65

50 - 65

50 - 65

50 - 65

28 - 40

14 - 23

6 - 12

5,5 - 7,0

II. Асфальтобетонные смеси для пористого асфальтобетона, применяемого в нижних слоях покрытий и в основаниях.

 

 

 

 

 

 

 

 

 

 

 

 

 

Непрерывная гранулометрия

Крупнозернистые

95 - 100

-

57 - 80

45 - 73

27 - 60

18 - 48

10 - 37

7 - 26

4 - 19

2 - 12

0 - 4

4,0 - 6,0

Среднезернистые

-

95 - 100

68 - 85

52 - 76

27 - 60

18 - 48

10 - 37

7 - 26

4 - 19

2 - 12

0 - 4

4,0 - 6,0

Мелкозернистые

-

-

95 - 100

67 - 85

35 - 65

27 - 50

18 - 38

12 - 27

6 - 18

2 - 13

0 - 6

4,0 - 6,5

 

Прерывистая гранулометрия

Крупнозернистые

95 - 100

62 - 82

52 - 72

42 - 60

30 - 50

30 - 50

30 - 50

30 - 50

20 - 32

10 - 18

0 - 4

4,0 - 6,0

Среднезернистые

-

95 - 100

72 - 88

60 - 80

35 - 65

35 - 65

35 - 65

35 - 65

22 - 44

10 - 25

0 - 4

4,0 - 6,0

Мелкозернистые

-

-

95 - 100

70 - 88

35 - 65

35 - 65

35 - 65

35 - 65

22 - 44

10 - 25

0 - 6

4,0 - 6,5

Примечания. 1. Увеличивать содержание щебня в смесях (в рекомендуемых таблицей пределах) следует при наличии природного песка, уменьшать - в случае применения дробленого песка.

2. В случае применения активированных минеральных порошков пределы примерного расхода битума, указанные в таблице, должны быть снижены на 0,5 - 1,0 %.

3. Для нижних слоев покрытий, а также для оснований допускается применять асфальтобетонные смеси, рекомендуемые для верхних слоев покрытия при соответствующем технико-экономическом обосновании.

4. При особо тяжелых нагрузках на дорогах количество минерального порошка в смесях для нижнего слоя может быть повышено до 8 %.

Таблица 1.9

Зерновой (гранулометрический) состав минеральной части холодных асфальтобетонных смесей и содержание в них битума (извлечение из ГОСТ 9128-76)

Наименование асфальтобетонной смеси и тип асфальтобетона

Содержание зерен минерального материала, %, мельче данного размера, мм

15

10

5

2,5

1,25

0,63

0,315

0,14

0,071

Примерный расход битума, % от массы минеральной части

Мелкозернистые:

 

 

 

 

 

 

 

 

 

 

тип Бх

95 - 100

79 - 85

50 - 65

33 - 53

21 - 39

14 - 29

10 - 22

9 - 16

8 - 12

3,5 - 5,5

То же

-

95 - 100

65 - 75

43 - 53

27 - 38

19 - 29

13 - 22

10 - 16

9 - 13

тип Вх

95 - 100

85 - 90

65 - 80

53 - 60

39 - 49

29 - 38

22 - 31

12 - 22

13 - 17

4,0 - 6,0

То же

-

95 - 100

75 - 82

53 - 66

38 - 55

29 - 44

22 - 35

16 - 25

13 - 19

Песчаные:

 

 

 

 

 

 

 

 

 

 

тип Дх

-

-

95 - 100

65 - 82

42 - 68

26 - 54

18 - 43

14 - 30

12 - 20

4,5 - 6,5

Примечания. 1. Увеличивать содержание щебня (в рекомендуемых пределах) следует при применении природного песка, уменьшать - в случае применения дробленого песка.

2. В случае применения активированных минеральных порошков пределы примерного расхода битума, указанные в таблице, должны снижаться на 0,5 - 1 %.

Рис. 1.1. Зерновые составы минеральной части горячих и теплых асфальтобетонных смесей с непрерывной гранулометрией:

а - крупно-, средне- и мелкозернистые (для нижнего слоя покрытия и для основания); б, в, г - средне- и мелкозернистые (для верхнего слоя покрытия)

Рис. 1.2. Зерновые составы минеральной части горячих и теплых песчаных смесей

Рис. 1.3. Зерновые составы минеральной части горячих и теплых асфальтобетонных смесей с прерывистой гранулометрией:

а - крупно-, средне- и мелкозернистые (для нижнего слоя покрытия и для основания); б, в - средне- и мелкозернистые (для верхнего слоя покрытия)

Рис. 1.4. Зерновые составы минеральной части холодных асфальтобетонных смесей:

а и б - мелкозернистых; в - песчаных

Холодный асфальтобетон в начале эксплуатации покрытий, как правило, имеет пористость более 5 %, но со временем она становится примерно такой же, как у плотного горячего и теплого асфальтобетонов. Холодный асфальтобетон применяют только в верхнем слое покрытия.

1.7. Плотные асфальтобетоны по содержанию в них щебня или песка (природного или дробленого) разделяются на типы, указанные в табл. 1.1.

1.8. Асфальтобетоны плотные (горячие и теплые) в зависимости от качества применяемых в них минеральных материалов, количества щебня (гравия) и физико-механических показателей подразделяются на марки, указанные в табл. 1.2 и 1.4.

Холодные асфальтобетоны в зависимости от качества применяемых в них минеральных материалов, класса жидких битумов и физико-механических показателей подразделяются на марки, указанные в табл. 1.3 и 1.5.

Показатели физико-механических свойств и структуры горячих и теплых асфальтобетонов для верхних слоев покрытий должны удовлетворять требованиям табл. 1.4 и 1.6, холодных - табл. 1.5. Показатели свойств горячего и теплого пористого асфальтобетона для нижних слоев покрытий и для оснований должны отвечать требованиям табл. 1.7.

1.9. Зерновой (гранулометрический) состав минеральной части горячих и теплых асфальтобетонных смесей и содержание в них битума должны соответствовать требованиям табл. 1.8, холодных смесей - табл. 1.9 и предельным кривым зернового состава (рис. 1.1 - 1.4).

1.10. Асфальтобетону I марки, приготовленному на основе активированных минеральных порошков и обладающему пористостью минерального остова на 2 % ниже требований стандарта, в установленном порядке, может быть присвоен Государственный знак качества.

2. ТИПЫ КОНСТРУКЦИЙ ДОРОЖНЫХ ОДЕЖД С АСФАЛЬТОБЕТОННЫМИ ПОКРЫТИЯМИ, ОБЛАСТЬ И УСЛОВИЯ ИХ ПРИМЕНЕНИЯ

2.1. Асфальтобетоны применяют для устройства усовершенствованных капитальных и облегченных покрытий на автомобильных дорогах I - IV категорий.

Для устройства усовершенствованных капитальных покрытий применяют асфальтобетоны горячие I и II марок и теплые I марки; для устройства усовершенствованных облегченных покрытий применяют горячие III и IV, теплые II - IV, холодные - I и II марок.

Рекомендуемая область применения различных видов асфальтобетонов для верхнего слоя покрытия приведена в табл. 2.1.

Горячий асфальтобетон применяют для устройства покрытий и оснований на проезжей части автомобильных дорог I - IV категорий, а также на подъездных дорогах промышленных предприятий III-п и IV-п категорий.

Теплый асфальтобетон применяют для устройства покрытий на дорогах III, IV и IV-п категорий во II - V дорожно-климатических зонах, а в I дорожно-климатической зоне - на дорогах I - IV, III-п; IV-п категорий.

Холодный асфальтобетон применяют для устройства покрытий на дорогах III, IV и IV-п категорий во II - V дорожно-климатических зонах.

При устройстве покрытий в городах марку и тип асфальтобетона следует выбирать в зависимости от назначения городских дорог и улиц в соответствии с указаниями СНиП II-60-75 (табл. 49 п. 9.38).

2.2. Конструкция дорожной одежды и толщины слоев покрытий и оснований определяются проектом. На рис. 2.1 приведены примеры типовых конструкций дорожных одежд с асфальтобетонными покрытиями в соответствии с альбомом «Типовых проектных решений дорожных одежд автомобильных дорог общей сети Союза ССР» (серия 503-0-11, Союздорпроект, 1976 г.).

Рис. 2.1. Примеры типовых конструкций дорожных одежд с асфальтобетонными покрытиями:

I - верхний слой покрытия - горячий, теплый, холодный асфальтобетоны; II - нижний слой покрытия - горячий пористый асфальтобетон крупно-, средне- и мелкозернистый; III - слой основания (1 - горячий щебеночный пористый асфальтобетон крупно- или среднезернистый; 2 - щебень, обработанный вязким битумом или битумной эмульсией; 3 - пористые щебеночные эмульсионно-минеральные смеси; 4 - горячий гравийный пористый асфальтобетон крупно- или среднезернистый; 5 - гравийно-песчаные смеси, обработанные битумной эмульсией в сочетании с цементом; 6 - щебень, обработанный вязким битумом по способу пропитки; 7 - гравийные смеси с добавлением 25 - 45 % щебня, обработанные битумной эмульсией); IV - слой основания (1 - щебеночные или гравийные материалы, укрепленные цементом; 2 - щебеночные или гравийные материалы, укрепленные золами уноса, золошлаковыми смесями или гранулированными шлаками в сочетании с цементом; 3 - грунты, укрепленные минеральными вяжущими (I класс прочности); 4 - гравийно-песчаные смеси, укрепленные портландцементом, золами уноса, золошлаковыми смесями или гранулированными шлаками в сочетании с цементом; 5 - грунты, укрепленные минеральными вяжущими (II класс прочности); 6 - грунты, укрепленные минеральными вяжущими (III класс прочности); 7 - цементобетон марок 75, 100, 125; 8 - щебень из естественного камня, гравия или шлака; 9 - щебеночные смеси или гравийные с добавлением 30 % щебня); V - песчаный подстилающий слой.

Примечание. В конструкции № 2 при использовании в качестве основания (слой IV) материалов, укрепленных цементом, толщина двухслойного асфальтобетонного покрытия принимается не менее 12 см.

2.3. Дорожные одежды с асфальтобетонным покрытием, как правило, имеют следующие конструктивные слои: покрытие (однослойное или двухслойное); основание (однослойное или двухслойное); дополнительный слой основания - дренирующий, морозозащитный, выравнивающий, противозаиливающий.

2.4. Асфальтобетонные покрытия могут быть одно- и двухслойные. Однослойное покрытие разрешается устраивать только на основании, верхний слой которого устроен из черного щебня, асфальтобетонной смеси или из щебня, обработанного битумом по способу пропитки.

Однослойные покрытия и верхний слой двухслойных покрытий устраивают из плотных горячих и теплых асфальтобетонов, отвечающих требованиям табл. 1.4, b из холодных асфальтобетонов, отвечающих требованиям табл. 1.5.

Для нижних слоев покрытия преимущественно применяют пористый асфальтобетон, отвечающий требованиям табл. 1.7.

2.5. Для верхнего слоя покрытия марку горячего, теплого и холодного асфальтобетонов, марку битума и тип гранулометрии выбирают в зависимости от категории дороги и климатических условий района строительства (см. табл. 2.1).

2.6. Толщина однослойного покрытия из горячего и теплого асфальтобетонов рекомендуется от 4 до 6 см, из холодного - 3 - 4 см; в двухслойном покрытии толщина верхнего слоя из мелко- и среднезернистого асфальтобетона равна 3,5 - 5 см, из песчаного - 3 - 3,5 см; толщина нижнего слоя из среднезернистого асфальтобетона - 4 - 6 см, из крупнозернистого - 5 - 8 см.

Общую толщину двухслойных покрытий с верхним слоем из щебенистого асфальтобетона (типов А, Б, В) принимают равной 7,5 - 13 см, из песчаного (типов Г, Д) - 7 - 9,5 см.

Минимальная толщина асфальтобетонного покрытия на основании из цементобетона равна 12 см; наименьшая толщина слоя покрытия из холодного асфальтобетона - 3 см, защитного слоя (поверхностная обработка) - 1,5 см.

В конструкциях, предусматривающих устройство двухслойного асфальтобетонного покрытия на основании из черного щебня или пористой асфальтобетонной смеси слоем до 8 см (см. рис. 2.1, конструкции № 4 - 7), целесообразно устройство нижнего слоя покрытия и верхнего слоя основания одним слоем равноценной толщины, выполняемым из материала нижнего слоя покрытия.

Такая замена целесообразна для достижения более высокой плотности материала и снижения стоимости за счет укладки одного слоя взамен двух.

Таблица 2.1

Рекомендуемая область применения различных асфальтобетонов для верхнего слоя дорожного покрытия с учетом категории дороги и климатических условий

Дорожно-климатическая зона

Вид асфальтобетона

Категория автомобильной дороги

 

I, II и III-п

III и IV-п

IV

 

Марка асфальтобетона

Тип асфальтобетона

Марка битума

Марка асфальтобетона

Тип асфальтобетона

Марка битума

Марка асфальтобетона

Тип асфальтобетона

Марка битума

 

1

2

3

4

5

6

7

8

9

10

11

 

I

Горячий

I

А, Б, В, Г

БНД 90/130

II

А, Б, В, Г, Д

БНД 90/130

БНД 60/90

IV

Б, В, Д

БНД 90/130

БН 90/130

БНД 60/90

БН 60/90

 

III

Б, В, Д

БНД 90/130 БН 90/130

 

Теплый

I

А, Б, В, Г

БНД 130/200

БНД 200/300

БГ 70/130

СГ 130/200

II

А, Б, В, Г, Д

БНД 130/200

БНД 200/300

БГ 70/130

СГ 130/200

III и IV

Б, В, Д

БНД 130/200

БН 130/200

БНД 200/300

БН 200/300

БГ 70/130

СП 30/200

 

Холодный

Не применяется

Не применяется

Не применяется

 

II и III

Горячий

I

А. Б, В, Г

БНД 60/90

БНД 90/130

II

А, Б, в, г, д

БНД 60/90

БНД 90/130

IV

Б, В, Д

БНД 60/90

БН 60/90

БНД 90/130

БН 90/130

 

III

Б, В, Д

БНД 60/90

БН 90/130

БНД 90/130

БН 60/90

 

 

 

Теплый

Не применяется

II

А, Б, в, г, д

БНД 130/200

БНД 200/300

БГ 70/130

СГ 130/200

III и IV

Б, В, Д

БНД 130/200

БН 130/200

БНД 200/300

БН 200/300

БГ 70/130

СГ 130/200

 

Холодный

Не применяется

I

Бх, Вх, Дх

СГ 70/130

II

Бх, Вх, Дх

СГ 70/130

МГ 70/130

 

IV и V

Горячий

I

А

БНД 40/60

БНД 60/90

II

А, Б, Г

БНД 40/60

БНД 60/90

БНД 90/130

IV

Б

БНД 40/60

 

в, д

БНД 40/60

БНД 60/90

БН 60/90

Б, В, Г

БНД 40/60

В, Д

БНД 40/60

БНД 60/90

 

III

Б

БНД 40/60

 

в, д

БНД 40/60

БНД 60/90

БН 60/90

 

Теплый

Не применяется

II

А, Б, В, Г, Д

БНД 130/200

БНД 200/300

БГ 70/130

СГ 130/200

III и IV

Б, В, Д

БНД 130/200

БН 130/200

БНД 200/300

БН 200/300

БГ 70/130

СГ 130/200

 

Холодный

То же

I

Бх, Вх, Дх

СГ 70/130

II

Бх, Вх, Дх

СГ 70/130

МГ 70/130

 

2.7. Асфальтобетонные покрытия устраивают с поперечным уклоном 15 - 20 ‰. Продольный уклон дорог, как правило, не должен превышать 60 ‰. В отдельных случаях на дорогах III категории можно допустить продольный уклон более 60 ‰ (но не более чем 80 ‰). При этом должна быть обеспечена повышенная сдвигоустойчивость и требуемая шероховатость покрытия.

2.8. Основания под асфальтобетонные покрытия устраивают из пористых асфальтобетонных смесей, черного щебня, эмульсионно-минеральных смесей, щебня, обработанного вязким битумом или битумной эмульсией по способу пропитки, каменных материалов или грунтов, укрепленных цементом, гранулированными шлаками, битумной эмульсией совместно с цементом, а также из щебня по способу заклинки.

При выборе типа основания под асфальтобетонные покрытия следует иметь в виду, что основания из материалов, укрепленных цементом и другими неорганическими вяжущими, лучше работают в районах с более мягкими климатическими условиями. Для районов с резко континентальным климатом предпочтение следует отдавать основаниям, устраиваемым с применением битумов.

2.9. Асфальтобетонные смеси пористые, предназначенные для устройства оснований, должны соответствовать требованиям табл. 1.7.

Для оснований допускается применять и плотные асфальтобетоны, рекомендуемые для верхних слоев покрытия, при соответствующем технико-экономическом обосновании. В частности, такие основания рекомендуются на участках дорог с высокой грузонапряженностью.

Зерновой (гранулометрический) состав асфальтобетонных смесей для устройства оснований приведен в табл. 1.8.

2.10. Основания из черного щебня и щебня, обработанного битумом по способу пропитки, устраивают согласно «Инструкции по устройству покрытий и оснований из щебня (гравия), обработанного органическими вяжущими» (ВСН 123-77).

2.11. Основание из каменных материалов, укрепленных битумной эмульсией и эмульсией совместно с цементом, устраивают согласно «Техническим указаниям по приготовлению и применению дорожных эмульсий» (ВСН 115-75).

Щебень должен соответствовать требованиям, приведенным в «Технических указаниях по устройству оснований дорожных одежд из каменных материалов, не укрепленных или укрепленных неорганическими вяжущими» (ВСН 184-75).

Для приготовления черного щебня применяют среднераспадающиеся анионные и катионные, а также обратные битумные эмульсии вязкие и жидкие в сочетании с прямыми марок СА и МА-1.

Щебень, обработанный эмульсией, можно использовать непосредственно после приготовления или заготавливать впрок, т.е. укладывать в штабель и затем использовать по мере необходимости. Такой способ работ не только устраняет зависимость строительных объектов от смесительной установки, но и ускоряет процесс формирования основания вследствие формирования пленки вяжущего на щебне в период хранения.

Для обработки щебня, предназначенного для укладки сразу после приготовления, используют эмульсии, содержащие битум марок БНД 40/60, БНД 60/90, БН 60/90, БНД 90/130 и БН 90/130.

Для щебня, заготавливаемого впрок, применяют прямые эмульсии, приготовленные на битумах пониженной вязкости (с глубиной проникания иглы 200 - 250), обратные вязкие (ЭО-В) и обратные жидкие (ЭО) в сочетании с прямыми СА и МА-1, приготовленные на битумах марок БНД 40/60, БНД 60/90 и БН 60/90.

Гранулометрический состав щебеночных пористых смесей должен соответствовать требованиям табл. 1.8 к смесям для устройства оснований.

Для обработки щебеночных смесей из кислых пород целесообразно использовать катионные эмульсии, обеспечивающие хорошее сцепление битума с минеральным материалом и быстрое формирование смеси.

Для обработки щебеночных смесей основных пород рекомендуются анионные эмульсии, обеспечивающие, как правило, хорошее сцепление.

Гравийные смеси для обеспечения лучшей удобоукладываемости и большей несущей способности слоя рекомендуется обогащать 25 - 45 % дробленых частиц (от общего количества гравийных частиц).

При отсутствии возможности обогатить гравийную смесь щебнем целесообразно использовать способ обработки анионной эмульсией совместно с цементом, позволяющий повысить несущую способность конструктивного слоя.

Двумя вяжущими (эмульсией и цементом) целесообразно укреплять песчаные, а также гравийно-песчаные смеси, содержащие гравийных частиц (крупнее 5 мм) менее 50 %.

Эмульсии применяют медленнораспадающиеся катионные или анионные, приготовленные из дорожных вязких битумов.

Песчаные смеси могут быть из природного песка или из смеси природного песка и отходов камнедробления (высевок) гранитных или известняковых.

Слон из смесей, обработанных двумя вяжущими (эмульсией и цементом), отличаются меньшей жесткостью, большей водо- и морозостойкостью, чем из смесей, укрепленных одним цементом. Наличие в этом материале битумного вяжущего увеличивает его устойчивость против усадочных и температурных напряжений. По сравнению с битумоминеральными песчаными смесями смеси, обработанные двумя вяжущими, отличаются большой прочностью и большим модулем упругости.

2.12. Основания из каменных материалов, укрепленных цементом, гранулированными шлаками или устраиваемые по способу заклинки, устраивают в соответствии с «Техническими указаниями по устройству оснований дорожных одежд из каменных материалов, не укрепленных и укрепленных неорганическими вяжущими» (ВСН 184-75).

Для устройства оснований из каменных материалов, укрепленных цементом или гранулированным шлаком, применяют рядовой или фракционированный щебень из естественных горных пород, шлаковый щебень, гравий, щебень из гравия, искусственные каменные материалы (керамдор и др.), гравийно-песчаные материалы, природный песок, песок из отходов дробления, а также другие материалы (ракушечники, слабые известняки, песчаники и т.д.) с содержанием глинистых частиц не более 5 %.

Гравий и щебень должны отвечать требованиям ВСН 184-75 к щебню (гравию) для устройства оснований, укрепленных цементом или другими минеральными вяжущими.

В качестве вяжущих применяют: гранулированные доменные и фосфатные шлаки, цементы, известь и другие активные неорганические материалы.

Для оснований, устраиваемых по способу заклинки, применяют фракционированный щебень естественных горных пород, щебень из горнорудных отходов и малоактивный щебень из металлургических шлаков после освобождения от включений металла (ГОСТ 8267-75 «Щебень из естественного камня для строительных работ» и ГОСТ 3344-73 «Щебень шлаковый доменный и сталеплавильный для дорожного строительства»). Прочность щебня должна соответствовать требованиям ВСН 184-75.

2.13. Основание из грунтов, укрепленных цементом, битумной эмульсией, эмульсией совместно с цементом, золами уноса, устраивают в соответствии с «Инструкцией по применению грунтов, укрепленных вяжущими материалами, для устройства оснований и покрытий автомобильных дорог и аэродромов» (СН 25-74).

Правила производства работ по устройству оснований различных типов подробно изложены в документах, ссылки на которые даны в соответствующих пунктах настоящего раздела.

3. ТРЕБОВАНИЯ К МАТЕРИАЛАМ, ПРИМЕНЯЕМЫМ ДЛЯ ПРИГОТОВЛЕНИЯ АСФАЛЬТОБЕТОННЫХ СМЕСЕЙ

Щебень и гравий

3.1. Для асфальтобетонных смесей следует применять щебень, получаемый дроблением массивных горных пород, валунного камня, крупного гравия и нераспадающихся металлургических шлаков, а также гравий, отвечающие требованиям ГОСТ 8267-75, ГОСТ 10260-74, ГОСТ 3344-73, ГОСТ 8268-74 и пп. 3.2 - 3.8 данного Руководства.

3.2. Марку щебня по дробимости, износу и морозостойкости выбирают, руководствуясь табл. 3.1 - 3.4.

3.3. В щебне для асфальтобетона, применяемого в верхнем слое покрытия, не должно быть зерен слабых и выветрелых пород более 10 %, в нижнем слое - более 15 %.

3.4. Содержание зерен пластинчатой (лещадной) и игловатой формы (% по массе) в щебне для верхнего слоя асфальтобетонных покрытий не должно превышать в асфальтобетонных смесях типа:

А (щебня 50 - 65 %).......................... 15 %

Б и Бх (щебня 35 - 50 %).................... 25 %

В и Вх ( »        20 - 35 %)................... 35 %

3.5. Не допускается применять для асфальтобетонных смесей щебень из глинистых (мергелистых) известняков, глинистых песчаников и глинистых сланцев.

3.6. Количество дробленых зерен в щебне из гравия должно быть не менее указанного в табл. 3.1 (дроблеными считаются зерна, поверхность которых околота более чем наполовину).

3.7. Количество кремнистых частиц в щебне из гравия и гравии не должно превышать 25 %. В щебне из гравия количество зерен из карбонатных пород должно быть не более 30 % для асфальтобетона типов А и Б.

3.8. Количество пылевидных и глинистых частиц в щебне (гравии) не должно превышать указанного в табл. 3.2.


Таблица 3.1

Требования к щебню и гравию для асфальтобетонных смесей

№ п/п

Показатели

Горячие и теплые асфальтобетонные смеси

Холодные асфальтобетонные смеси

Для верхнего слоя покрытия

Для нижнего слоя покрытия

Для основания

Для верхнего слоя покрытия

Марка I

Марка II

Марка III

Марка IV

Марка I

Марка II

Тип гранулометрии

Категория дороги

Тип гранулометрии

А

Б

В

А

Б

В

Б

В

Б

В

I, II

III, IV

I, II

III, IV

Бх

Вх

Бх

Вх

1

Марка по прочности, не ниже:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) щебень из изверж. и метаморфич. пород

1200

1200

1000

1000

1000

800

800

800

800

600

800

600

600

600

1000

800

800

600

б) щебень из осадочных карбонатных пород

-

-

1000

-

800

600

800

600

600

300

600

400

400

300

800

600

800

600

в) щебень из прочих осадочных пород

1000

1000

1000

1000

800

600

800

600

600

300

600

400

400

300

800

600

800

600

г) щебень из гравия

-

Др. 8

(1000)

Др. 12

(800)

Др. 8

(1000)

Др. 8

(1000)

Др. 8

(800)

Др. 12

(800)

Др. 16

(600)

Др. 16

(600)

Др.24

(400)

Др. 12

(800)

Др. 16

(600)

Др. 16

(600)

Др.24

(400)

Др. 8

(1000)

Др.12

(800)

Др.12

(800)

Др. 16

(600)

д) гравий

-

-

-

-

-

-

Др. 12

(800)

Др. 16

(600)

Др. 16

(600)

Др.24

(400)

Др. 12

(800)

Др. 16

(600)

Др. 16

(600)

Др.24

(400)

-

-

Др.12

(800)

Др. 16

(600)

е) класс щебня из металлургии, шлака

-

1

2

2

2

3

3

3

3

4

3

4

4

4

1

2

2

3

2

Марка по износу в полочном барабане, не ниже:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) щебень из изверж. и метаморфич. пород

И-I

И-I

И-II

И-II

И-II

И-III

И-III

И-III

И-III

И-IV

И-III

И-IV

И-IV

И-IV

И-II

И-III

И-III

И-IV

б) щебень из осадочных карбонатных пород

-

-

И-I

-

И-II

И-III

И-II

И-III

И-III

И-IV

И-III

И-IV

И-IV

И-IV

И-II

И-III

И-II

И-III

в) щебень из прочих осадочных пород

И-I

И-I

И-II

И-II

И-II

И-III

И-II

И-III

И-III

И-IV

И-III

И-IV

И-IV

И-IV

И-II

И-III

И-II

И-III

г) щебень из гравия

-

И-I

И-II

И-I

И-II

И-III

И-II

И-III

И-III

И-IV

И-II

И-III

И-III

И-IV

И-I

И-II

И-II

И-III

д) гравий

-

-

-

-

-

-

И-II

И-III

И-III

И-IV

И-II

И-III

И-III

И-IV

-

-

И-30

И-40

3

Степень морозостойкости щебня, гравия, не ниже:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а) суровые климатические условия

50

50

50

50

50

25

25

25

25

25

25

25

25

25

50

50

50

25

б) мягкие климатические условия

25

25

25

25

25

15

15

15

15

15

15

15

15

15

25

25

25

15

4

Количество дробленых зерен в щебне из гравия, % по массе, не менее

-

100

80

100

80

70

80

60

70

50

80

70

70

50

100

80

80

60

Примечания. 1. Суровые климатические условия характеризуются среднемесячной температурой наиболее холодного месяца ниже -15 °С, умеренные от -5 до -15 °С, мягкие до -5 °С.

2. Указанные в табл. 3.1 требования к щебню для I и II марок асфальтобетонов типов А и Б относятся также к щебню, применяемому при устройстве шероховатых поверхностей покрытий втапливанием черного щебня или поверхностной обработкой.

3. Для асфальтобетона марки IV типа Б и марки III типа В допускается применение щебня из карбонатных пород марки 400, предварительно обработанного смесью битума с поверхностно-активными веществами анионного типа. При тех же условиях допускается применение щебня из карбонатных пород марки 200 в асфальтобетоне марки IV типа В.

4. В случае расхождения между показателями износа и дробимости марку щебня принимают по наихудшему показателю.


Таблица 3.2

Требования к щебню (гравию) по содержанию пылевидных и глинистых частиц

Вид, марка и назначение асфальтобетона

Содержание пылевидных и глинистых частиц в щебне (гравии) % по массе, не более

из осадочных карбонатных пород

из изверженных, метаморфических и остальных осадочных пород

Горячий и теплый для верхнего и нижнего слоев марок:

 

 

I и II

2

1

III и IV

3

2

Холодный для верхнего слоя марок:

 

 

I

2

1

II

3

2

Горячий и теплый для оснований

4

3

Таблица 3.3

Характеристика марок щебня по морозостойкости (извлечение из ГОСТ 8267-75)

Вид испытаний

Морозостойкость щебня

Мрз15

Мрз25

Мрз50

Непосредственное замораживание:

 

 

 

а) количество циклов

15

25

50

б) потеря в массе после испытания, %, не более

10

10

5

В растворе сернокислого натрия:

 

 

 

а) количество циклов

3

5

10

б) потеря в массе после испытания, %, не более

10

10

10

Песок

3.9. Для приготовления асфальтобетонных смесей применяют пески: дробленые, природные нефракционированные и фракционированные, отвечающие требованиям ГОСТ 8736-77; крупные (модуль крупности Мк > 2,5); средние (модуль крупности Мк = 2,5 - 2,0). В качестве дробленого песка допускается применение отходов дробления горных пород с наибольшим размером зерен 5 мм.

При подборе минеральной части асфальтобетона по принципу непрерывной гранулометрии допускается применять мелкий и очень мелкий песок (с модулем крупности меньше 2,0), если он обогащен крупным песком (природным или дробленым). Количество добавки устанавливают с таким расчетом, чтобы зерновой состав смеси щебня, песка и минерального порошка соответствовал требованиям табл. 1.8 и 1.9.

Если отсутствует крупный песок, составы горячих и теплых асфальтобетонных смесей типов А и Б подбирают с мелким песком по принципу прерывистой гранулометрии (см. табл. 1.8). В холодном асфальтобетоне мелкий песок не применяют (за исключением активированного).

3.10. Для повышения качества рекомендуется активировать песок гидратной известью1 (3 - 4 % по массе) в виброшаровой мельнице или специальной установке в соответствии с п. 5.40.

1 Гидратная известь для активации песка должна соответствовать требованиям ГОСТ 9179-70.

Модуль крупности активированного песка должен быть не менее 1,7.

3.11. В песчаных асфальтобетонных смесях из дробленого песка следует применять крупный песок с модулем крупности более 2,5 и содержанием зерен размером 5 - 1,215 мм не менее 33 %. В песчаных смесях из природного песка или смеси природного и дробленого применяют крупные и средние пески с модулем крупности более 2 и содержанием зерен размером 5 - 1,25 мм не менее 14 %. Мелкий песок допускается использовать для этой цели после активации известью.

3.12. Для песчаных смесей типа Г применяют дробленый песок, полученный при дроблении изверженных горных пород прочностью не ниже марки 1000. Содержание частиц менее 0,071 мм в дробленом песке не должно превышать 5 %, в том числе глины не более 0,5 %. Содержание зерен карбонатных горных пород в дробленом песке из гравия не должно превышать 30 %.

3.13. В горячих и теплых асфальтобетонных смесях I и II марок и в холодных асфальтобетонных смесях I марки используют дробленый песок из изверженных, метаморфических и осадочных пород марки по прочности не ниже 800 или из гравия марки не ниже 1000.

В горячих и теплых асфальтобетонных смесях III и IV марок и в холодных смесях II марки используют дробленый песок из пород марок по прочности не ниже 400 или из гравия марки не ниже 600.

В дробленом песке из карбонатных пород, предназначенном для холодных асфальтобетонных смесей, частиц мельче 0,071 мм допускается до 20 %, если эти частицы получены в результате измельчения карбонатной горной породы.


Таблица 3.4

Характеристика марок щебня по дробимости и износу (извлечение из ГОСТ 8267-75, ГОСТ 10260-74, ГОСТ 3344-73, ГОСТ 8268-74)

Породы, из которых получен щебень

Марка или класс щебня и гравия

1200

1000

800

600

400

300

1-й класс

2-й класс

3-й класс

4-й класс

И-I

И-II

И-III

И-IV

1-й класс

2-й класс

3-й класс

4-й класс

Дробимость щебня при сжатии в водонасыщенном состоянии, % потери массы

Износ щебня в полочном барабане, % потери массы

Изверженные эффизивные (излившиеся)

Свыше 9 до 11

Свыше 11 до 13

Свыше 13 до 15

Свыше 15 до 20

-

-

-

-

-

-

До 25

Свыше 25 до 35

Свыше 35 до 45

Свыше 45 до 60

-

-

-

-

Изверженные интрузивные (глубинные) и метаморфические

Свыше 12 до 16

Свыше 16 до 20

Свыше 20 до 25

Свыше 25 до 34

-

-

-

-

-

-

До 25

Свыше 25 до 35

Свыше 35 до 45

Свыше 45 до 60

-

-

-

-

Осадочные массивные

До 11

Свыше 11 до 13

Свыше 13 до 15

Свыше 15 до 20

Свыше 20 до 28

Свыше 28 до 38

-

-

-

-

До 30

Свыше 25 до 35

Свыше 35 до 45

Свыше 45 до 60

-

-

-

-

Щебень из гравия

-

До 10

Свыше 10 до 14

Свыше 14 до 18

Свыше 18 до 26

-

-

-

-

-

До 20

Свыше 20 до 30

Свыше 30 до 40

Свыше 40 до 50

-

-

-

-

Гравий

-

До 8

Свыше 8 до 12

Свыше 12 до 16

Свыше 16 до 24

-

-

-

-

-

До 20

Свыше 20 до 30

Свыше 30 до 40

Свыше 40 до 50

-

-

-

-

Шлак

-

-

-

-

-

-

До 15

Свыше 15 до 25

Свыше 25 до 35

Свыше 35 до 45

-

-

-

-

До 25

Свыше 25 до 35

Свыше 35 до 45

Свыше 45 до 55


3.14. В песчаных и мелкозернистых (крупностью до 10 мм) горячих, теплых и холодных асфальтобетонных смесях II марки допускается применять в качестве щебня и песка активированные продукты дробления гравия (кроме смесей с гранулометрией типа А). Исходный гравий должен иметь показатель дробимости не ниже Др.12. Гравий дробят в специальной установке (см. п. 5.39) в присутствии следующих активирующих материалов:

а) битумов БНД 90/130, БНД 60/90*, обогащенных высшими алифатическими аминами (катионактивные ПАВ) в количестве 0,25 % от массы битума;

* Как исключение можно применять битумы БН 90/130 и БН 60/90

б) смол или дегтей, получаемых при низкотемпературной переработке твердого топлива (каменного или бурого угля, горючих сланцев, торца, древесины). Смолы или дегти применяют в смесях с битумом в соотношении 1:1 - 1:2 или без битума. Количество активирующих материалов составляет 1,5 - 2,5 % к массе гравия.

3.15. Содержание в песке зерен, проходящих через сито с сеткой № 0,14, не должно быть более 15 %, а в активированных продуктах дробления гравия - более 25 %. Количество пылевидных и глинистых частиц, определяемых отмучиванием, не должно превышать 3 % в природном и 7 % в дробленом (неактивированном) песке, в том числе глины не должно быть более 0,5 %.

Минеральный порошок

3.16. Минеральный порошок для асфальтобетонных смесей получают тонким измельчением (размолом) карбонатных горных пород - известняков, доломитизированных известняков, известняков-ракушечников, битуминозных известняков и доломитов и других карбонатных горных пород, а также основных металлургических шлаков.

3.17. В горячих и теплых асфальтобетонных смесях III и IV марок в качестве минеральных порошков допускается применять порошкообразные отходы промышленности: золу уноса ТЭЦ, пыль уноса цементных заводов, отходы асбестоцементного производства, золу каменного угля, а также тонкомолотые некарбонатные горные породы (для IV марки).

3.18. Для повышения качества асфальтобетона применяют активированные минеральные порошки, получаемые размолом карбонатных горных пород, перечисленных в п. 3.10 (за исключением битуминозных), совместно с активирующим материалом.

3.19. Активирующими материалами могут служить:

а) смесь продуктов, содержащих анионактивные поверхностно-активные вещества (ПАВ) чипа высших карбоновых кислот с вязким битумом. Соотношение по массе этих продуктов и битума должно быть 1:1 - 3:1. Перечень продуктов, содержащих высшие карбоновые кислоты, приведен в табл. 3.13, а также в «Инструкции по использованию поверхностно-активных веществ при строительстве дорожных покрытий с применением битумов» (ВСН 59-68). Продукты, содержащие высшие карбоновые кислоты, должны иметь кислотное число не ниже 50 мг КОН на 1 г число омыления не ниже 120 мг КОН на 1 г;

б) смесь анионактивных поверхностно-активных веществ типа железных солей высших карбоновых кислот с вязким битумом. Для приготовления ПАВ типа железных солей высших карбоновых кислот применяют хлорное железо I и II сортов, соответствующее требованиям ГОСТ 11159-76. Составы ПАВ типа железных солей высших карбоновых кислот приведены в Инструкции ВСН 59-68;

в) смолы или дегти (см. табл. 3.12), получаемые при низкотемпературной переработке твердого топлива (горючих сланцев, каменного или бурого угля, торфа. Смолы или дегти применяют в смесях с битумом в соотношении 1:1 - 1:2 или без битума.

г) гидрофобизирующая кремнийорганическая жидкость 136-41 (полиэтилгидросилоксан), соответствующая требованиям ГОСТ 10834-76.

3.20. Для активации минеральных порошков разрешается применять продукты, не перечисленные в п. 3.19, если активированные ими минеральные порошки будут соответствовать требованиям табл. 3.5.

3.21. Общее количество активирующих материалов, за исключением гидрофобизирующей жидкости 136-41, должно быть 1,5 - 2,5 %, а гидрофобизирующей жидкости - 0,25 - 0,50 % к массе размалываемого материала.

3.22. Нефтяные битумы, применяемые для приготовления активирующих материалов, должны соответствовать требованиям ГОСТ 22245-76.

3.23. Марку битума для активирующей смеси назначают с учетом вида асфальтобетона (горячий, теплый, холодный) и климатических условий района строительства (табл. 3.6).

3.24. В целях ускорения формирования дорожного покрытия из холодного или теплого асфальтобетонов, приготовленных с жидким битумом марки СГ 130/200 или вязким битумом марки БНД 200/300, рекомендуется применять минеральный порошок, активированный смесью битума с анионактивными веществами типа железных солей высших карбоновых кислот (ФР, ФКК, ФОП, ФКГ, ФГС согласно Инструкции ВСН 59-68).

Таблица 3.5

Технические требования к минеральным порошкам из карбонатных горных пород (извлечение из ГОСТ 10557-71)

Показатели

Нормы по видам порошка

Активированный

Неактивированный

Зерновой состав, % по массе:

 

 

мельче 1,25 мм

100

100

»     0,315   » не менее

95

90

»     0,071   »   »      »

80

70

Пористость, % но объему, не более

30

35

Набухание образцов из смеси минерального порошка с битумом, % по объему, не более

1,5

2,5

Показатель битумоемкости, г на 100 см3 (абсолютного объема), не более

50

65

Влажность, % по массе, не более

0,5

1,0

Примечания. 1. Если активированный минеральный порошок приготовлен из карбонатных горных пород с содержанием глины более 5 %, набухание смеси порошка с битумом допускается до 2,5 %, а битумоемкость - до 65 г на 100 см3.

2. В минеральных порошках, получаемых из горных пород, у которых прочность при сжатии выше 400 × 105 Па (400 кгс/см3), за допускаемое количество содержащихся в них частиц мельче 0,071 мм принимается величина на 5 % меньше предусмотренной в табл. 3.5.

3.25. Карбонатные горные породы, используемые для производства активированных и неактивированных минеральных порошков, не должны содержать глинистых примесей более 5 %. О загрязненности карбонатной горной породы глинистыми примесями судят по суммарному содержанию полуторных окислов (Al2О3 + Fe2О3), которых не должно быть более 1,7 %.

3.20. При активации порошков дегтем или смолами (п. 3,19, в), а также гидрофобизирующей жидкостью 136-41 (п. 3.19, г) в горной породе допускается до 15 % глинистых примесей (полуторных окислов - до 5 %).

3.27. Порошкообразные отходы промышленности, применяемые в качестве минеральных порошков, должны быть без загрязняющих примесей и не должны содержать свободной окиси кальция (СаО).

Примечание. Наличие окиси кальция устанавливают по методике, изложенной в инструкции 59 - 68.

Таблица 3.6

Марки битумов для активирующей смеси

Асфальтобетон

Дорожно-климатическая зона

I

II и III

IV и V

Горячий

БНД 200/300

БНД 130/200

БНД 90/130

БНД 130/200

БНД 90/130

БНД 60/90

Теплый

БНД 200/300

БНД 130/200

БНД 90/130

БНД 130/200

БНД 90/130

БНД 60/90

БНД 90/130

БНД 60/90

БНД 40/60

БНД 60/90

БНД 40/60

 

БНД 40/60

 

 

Холодный

-

БНД 60/90

БНД 60/90

БНД 40/60

БНД 40/60

Примечание. При отсутствии битума марок БНД в виде исключения разрешается использовать битумы марок БН с теми же пределами глубины проникания иглы при 25 °С.

3.28. Минеральные порошки из карбонатных горных пород должны соответствовать требованиям табл. 3.5 (ГОСТ 16557-71), остальные - требованиям табл. 3.7.

Минеральные порошки испытывают в соответствии с ГОСТ 12784-71.

3.29. Качество минеральных порошков, перечисленных в п. 3.17, дополнительно проверяют по свойствам песчаного асфальтобетона, приготовленного с применением указанных порошков. Коэффициент водостойкости образцов из горячего и теплого асфальтобетона с остаточной пористостью 4,5 - 5 % после длительного водонасыщения (15 сут) должен соответствовать требованиям табл. 1.4 (в зависимости от вида и марки асфальтобетона). При этом минеральную часть асфальтобетона подбирают по верхнему пределу кривой плотной смеси, т.е. с максимальным содержанием минерального порошка (см. рис. 1.2).

3.30. Минеральный порошок должен быть сухим, рыхлым, сыпучим. Активированный минеральный порошок, кроме того, должен быть однородным по цвету и гидрофобным. Различие в содержании активирующей смеси в пробах, отобранных из каждой поступившей партии порошка, не должно быть более ± 0,15 % от массы порошка (см. ГОСТ 12784-71).

Примечание. К порошкам, активированным смолами, перечисленными в п. 3.19, в, требования по гидрофобности не предъявляются.

Таблица 3.7

Технические требования к минеральным порошкам из некарбонатных горных пород и отходов промышленности (извлечение из ГОСТ 9128-76)

Показатели

Нормы по видам порошка

Из основных металлургических шлаков и некарбонатных горных пород

Отходы промышленности

Золы уноса ТЭЦ

Пыль уноса цементных заводов

Зерновой состав, % по массе, не менее:

 

 

 

мельче 1,25 мм

100

100

100

»     0,315   »

90

55

90

»     0,071   »

70

35

70

Пористость, % по объему, не более

35

45

45

Набухание образцов из смеси минерального порошка с битумом, % по объему, не более

2,5

Не нормируется

2,5

Коэффициент водостойкости образцов из смеси порошка с битумом

Не нормируется

0,6

0,8

Показатель битумоемкости, г на 100 см3 (абсолютного объема), не более

То же

100

100

Содержание водорастворимых соединений, % по массе, не более

»

1

6

Влажность, % по массе, не более

1,0

2,0

2,0

Содержание окислов щелочных металлов (Na2О + К2О), % по массе, не более

Не нормируется

6

Потери при прокладывании, % по массе, не более

То же

20

Не нормируется

Примечания. 1. В смесях IV марки допускается применение минеральных порошков с содержанием частиц мельче 0,071 мм не менее 60 %.

2. Пористость, коэффициент водостойкости и битумоемкость золошлаковых смесей ТЭЦ определяют для той их части, которая проходит сито с отверстием 0,315 мм.

3. Показатель битумоемкости минерального порошка определяют только при установлении пригодности нового материала (горной породы) для приготовления минерального порошка, а также в случаях арбитража.

4. Содержание окислов щелочных металлов определяют химическим анализом на цементных заводах и указывают в паспорте.

Таблица 3.8

Минеральные порошки для асфальтобетонов

Вид минерального порошка

Вид и марка асфальтобетона

Горячий и теплый

Холодный

I

II

III

IV

I и II

Активированные минеральные порошки из карбонатных горных пород

+

+

-

-

+

Неактивированные минеральные порошки из карбонатных горных пород

+

+

+

+

+

Тонкомолотые основные металлургические шлаки

-

+

+

-

+

Тонкомолотые некарбонатные горные породы

-

-

-

+

-

Порошкообразные отходы промышленности

-

-

+

+

-

Примечания. 1. Минеральные порошки, предусмотренные для асфальтобетонов высших марок, могут быть применены для асфальтобетонов низших марок только при условии экономической целесообразности.

2. В I марке асфальтобетонов применяют преимущественно активированные минеральные порошки.

3.31. При производстве активированных минеральных порошков следует руководствоваться «Техническими указаниями по производству активированных минеральных порошков и применению их в асфальтобетоне» (ВСН 113-65).

3.32. Выбор минеральных порошков по видам и маркам асфальтобетона осуществляют в соответствии с табл. 1.2, 1.3 и 3.8.

Битумы

3.33. Для приготовления асфальтобетонных смесей применяют нефтяные дорожные вязкие и нефтяные дорожные жидкие битумы (табл. 3.9 и 3.10), соответствующие требованиям ГОСТ 22245-76 и ГОСТ 11955-74. Для горячих и теплых асфальтобетонных смесей I и II марок следует применять только битумы марок БНД, а для горячих и теплых асфальтобетонных смесей III и IV марок, а также для асфальтобетонных смесей, предназначенных для устройства оснований и нижних слоев покрытий, наряду с битумами марок БНД допускается также применение битумов марок БН соответствующей вязкости.

3.34. Марку вязкого битума, а также класс и марку жидкого битума выбирают в зависимости от вида асфальтобетона, климатических условий района строительства и категории дороги, а для холодного асфальтобетона - с учетом условий и сроков хранения смеси на складе. При выборе марки битума следует руководствоваться табл. 2.1.

3.35. Нефтяные вязкие дорожные битумы выпускаются нефтеперерабатывающими заводами с ПАВ или без них.

При маркировке битумов, выработанных с добавками ПАВ, к наименованию марки битума добавляется индекс п, например, БНДп 200/300.

В случаях, когда поступивший на строительство битум не обеспечивает сцепление с минеральной частью асфальтобетона в соответствии с ГОСТ 9128-76, в него следует ввести ПАВ на АБЗ.

3.36. Нефтяные жидкие дорожные битумы получают на нефтеперерабатывающих заводах смешением вязких битумов, отвечающих требованиям ГОСТ 22245-76, с жидкими нефтяными продуктами (разжижителями) установленного фракционного состава (ГОСТ 11955-74) и добавлением ПАВ.

3.37. В исключительных случаях при отсутствии жидких битумов промышленного производства жидкие битумы классов СГ и МГ могут быть приготовлены на АБЗ смешением вязкого битума с разжижителем и добавлением ПАВ.

Жидкие битумы класса СГ готовят смешением вязких битумов марок БНД 40/60 или БНД 60/90 с разжижителями, имеющими следующие характеристики: начало кипения не ниже 145 °С, 50 % продукта испаряется при температуре не выше 215 °С, 96 % выкипает при температуре не выше 300 °С.

Этим требованиям могут отвечать:

арктическое дизельное топливо А (ГОСТ 305-73), зимнее дизельное топливо З (ГОСТ 305-73), керосин для технических целей (ГОСТ 18499-73). Извлечения из соответствующих ГОСТов приведены в приложениях.

Жидкие битумы класса МГ готовят смешением вязких битумов БНД 40/60 или БНД 60/90 с разжижителями, 50 % массы которых испаряется до температуры 280 °С, а 96 % массы - до температуры 360 °С.

Этим требованиям могут отвечать: топливо дизельное летнее Л (ГОСТ 305-73); топливо для быстроходных дизелей ДЗ, ДА, ДС (ГОСТ 4749-73); масло зеленое (ГОСТ 2985-64). Извлечения из соответствующих ГОСТов приведены в приложениях.

Соотношение битума и разжижителя, а также оптимальное количество ПАВ устанавливают предварительно в лаборатории. Ориентировочные концентрации разжижителя и ПАВ, необходимые для получения жидких битумов разных марок, приведены в табл. 3.11 и 3.12.

3.38. Жидкие битумы следует готовить в отдельном битумном котле, оборудованном пароподогревом. Котел заполняют на 0,7 объема обезвоженным вязким битумом, температура которого должна быть в пределах 90 - 100 °С при изготовлении битумов класса СГ и 100 - 110 °С при изготовлении битумов класса МГ. Затем в битум при постоянном перемешивании вводят небольшими порциями разжижитель без подогрева и ПАВ, разогретое до 50 - 70 °С. Перемешивание осуществляется циркуляцией битумным насосом или другим способом до получения однородного материала.

Для соблюдения требуемого соотношения компонентов разжижитель и ПАВ следует подавать в котел через дозатор.

3.39. В некоторых случаях путем разжижения на АБЗ могут быть получены битумы марок БНД 130/200 и БНД 200/300, используемые для приготовления теплых асфальтобетонных смесей.

Таблица 3.9

Требования к вязким нефтяным битумам (извлечение из ГОСТ 22245-76)

Показатели

Нормы по маркам

БНД 200/300

БНД 130/200

БНД 90/130

БНД 60/90

БНД 40/60

БН 200/300

БН 130/200

БН 90/130

БН 60/90

Метод испытания

1. Глубина проникания иглы:

 

 

 

 

 

 

 

 

 

 

а) при 25 °С

201 - 300

131 - 200

91 - 130

61 - 90

40 - 60

201 - 300

131 - 200

91 - 130

60 - 90

По ГОСТ 11501-73

б) » 0 °С, не менее

45

35

28

20

13

-

-

-

-

 

2. Температура размягчения по кольцу и шару, °С, не ниже

35

39

43

47

51

33

37

40

45

По ГОСТ 11506-73

3. Растяжимость, см, не менее:

 

 

 

 

 

 

 

 

 

 

а) при 25 °С

-

65

60

50

40

-

70

60

50

По ГОСТ 11505-75

б) » 0 °С

20

6

4,2

3,5

-

-

-

-

-

 

4. Температура хрупкости, °С, не выше

-20

-18

-17

-15

-10

-

-

-

-

По ГОСТ 11507-65

5. Температура вспышки, °С, не ниже

200

220

220

220

220

200

220

220

220

По ГОСТ 4333-48

6. Сцепление с мрамором или песком

Выдерживает по контрольному образцу № 2

-

-

-

-

По ГОСТ 11508-74, метод А

7. Изменение температуры размягчения после прогрева, °С, не более

8

7

6

6

6

8

7

6

6

По ГОСТ 18180-72 или ГОСТ 11506- 73 с дополнением по п. 3.2. ГОСТ 22245-76

8. Индекс пенетрации

От +1 до -1

От +1 до -1,5

По справочному приложению ГОСТ 22245-76

9. Содержание водорастворимых соединений, %, не более

0,2

0,2

0,3

0,3

0,3

-

-

-

-

По ГОСТ 11510-65

Примечания. 1. Допускается для битумов, изготовленных с добавлением поверхностно-активных веществ, снижение нормы по показателю «растяжимость при 25 °С» на 10 % и увеличение содержания водорастворимых соединений до 0,5 %.

2. Допускается для битумов, изготовляемых в Азербайджанской ССР, увеличение содержания водорастворимых соединений до 0,4 %.

3. При изготовлении битумов марок БНД, которым в установленном порядке присвоен Государственный знак качества, определение показателя по п. 6 таблицы необходимо проводить по контрольному образцу № 1, кроме марки БНД 200/300, а битум марки БНД 40/60 должен иметь температуру хрупкости не выше минус 12 °С. Нормы в таблице по п. 3б для битумов марок БНД распространяется только на битум, аттестованный Государственным знаком качества.

4. Показатель по п. 7 таблицы является факультативным до 01.01.1980 г.

Таблица 3.10

Требования к жидким дорожным битумам, используемым для приготовления асфальтобетона

Показатели

Нормы по маркам

Методы испытания

БГ 70/130

СГ 70/130

СГ 130/200

МГ 70/130

МГ 130/200

Условная вязкость по вискозиметру с отверстием 5 мм при 60 °С, с

71 - 130

71 - 130

131 - 200

71 - 130

131 - 200

По ГОСТ 11503-74

Количество испарившегося разжижителя при выдерживании битума в термостате (60°, 5 ч) или вакуумтермостате (100 °С, 1 ч), % от массы битума, не менее:

7

8

7

7

5

По ГОСТ 11504-73

в термостате (60 °С, 5 ч)

 

 

 

 

 

 

в вакуумтермостате (100 °С, 1 ч)

7

-

-

-

-

 

в термостате (100 °С, 3 ч)

 

 

 

 

 

 

в вакуумтермостате (100 °С, 2 ч)

-

8

7

-

-

 

в термостате (110 °С, 5 ч)

 

 

 

 

 

 

в вакуумтермостате (100 °С, 3 ч)

-

-

-

7

5

 

Температура размягчения остатка после определения количества испарившегося разжижителя, °С, не ниже

37

39

39

29

30

По ГОСТ 11506-73

Температура вспышки в открытом тигле, °С, не ниже

37

50

60

110

110

По ГОСТ 4333-48

Испытание на сцепление с мрамором или песком

Выдерживает в соответствии с контрольным образцом № 2

По ГОСТ 11508-74, метод Б с дополнением по п. 4.3 ГОСТ 11955-74

Таблица 3.11

Ориентировочные концентрации разжижителей, используемых при приготовлении разжиженных битумов

Требуемая марка битума

Марка исходного битума

Количество разжижителя для получения битума заданной вязкости, % от массы

Дизельное топливо А и З, керосин для технических целей

Дизельное топливо Л, топливо для быстроходных дизелей ДЗ, ДА, ДС, зеленое масло

БНД 200/300

БНД 60/90

4 - 7

5 - 8

БНД 90/130

3 - 5

4 - 7

БНД 130/200

БНД 60/90

4 - 6

4 - 6

БНД 90/130

3 - 4

3 - 5

СГ 130/200

БНД 40/60

14 - 18

-

БНД 60/90

12 - 16

-

СГ 70/130

БНД 40/60

16 - 20

-

БНД 60/90

14 - 17

-

МГ 130/200

БНД 40/60

-

17 - 23

БНД 60/90

-

14 - 18

МГ 70/130

БНД 40/60

-

19 - 25

БНД 60/90

-

16 - 20

Примечание. Для приготовления битумов БНД 200/300 и БНД 130/200 в качестве разжижителя могут быть также использованы каменноугольные дегти Д-3, Д-4 (6 - 18 %), Д-5 (9 - 20 %), каменноугольное масло (5 - 12 %), сланцевое масло (4 - 10 %).

Для этого в вязкие битумы БНД 40/60, БНД 60/90 и БНД 90/130 вводят разжижители, рекомендуемые для битумов класса СГ и МГ в соответствии с п. 3.37, а также каменноугольные дегти марок Д-3, Д-4, Д-5, каменноугольные и сланцевые масла.

3.40. Жидкие битумы классов БГ и СГ должны храниться в герметично закрытых емкостях, а битумы класса МГ - в битумохранилищах закрытого типа.

Сроки хранения жидких битумов без подогрева с момента изготовления; для битумов класса БГ - 2 мес, СГ - 6 мес, МГ - 8 мес.

Поверхностно-активные вещества и активаторы

3.41. При устройстве дорожных асфальтобетонных покрытий в необходимых случаях рекомендуется применять поверхностно-активные вещества (ПАВ) и активаторы.

3.42. Поверхностно-активные вещества назначают:

в случае отсутствия требуемого сцепления битума с минеральной частью асфальтобетонных смесей;

для обеспечения возможности использования не полностью просушенных минеральных материалов, что может иметь место при строительстве покрытий осенью и весной (с применением ПАВ допускается остаточная влажность минеральных материалов до 1 % при приготовлении горячих и до 3 % при приготовлении теплых и холодных асфальтобетонных смесей);

для активации поверхности минеральных материалов (порошка, песка, гравийного материала);

для уменьшения слеживаемости холодных асфальтобетонных смесей в процессе хранения и транспортирования.

Кроме того, применение ПАВ позволяет уменьшить температуру нагрева минеральных материалов и смесей, увеличить степень обволакивания битумом поверхности минеральных частиц, сократить время перемешивания, улучшить удобоукладываемость и уплотняемость смесей.

3.43. Используемые в асфальтобетоне ионогенные ПАВ относятся к двум классам: катионактивных и анионактивных веществ.

К классу катионактивных веществ относятся соли высших первичных, вторичных и третичных алифатических аминов, четырехзамещенные аммониевые основания и т.п.

К анионактивным веществам относятся высшие карбоновые кислоты, соли (мыла) тяжелых и щелочно-земельных металлов высших карбоновых кислот и т.п.

В качестве ПАВ используют также некоторые смолы твердых топлив. Перечень ПАВ и активаторов, а также рекомендации по их использованию приведены в табл. 3.12.

Таблица 3.12

Поверхностно-активные вещества и активаторы, применяемые при приготовлении асфальтобетонных смесей

Класс ПАВ

Рекомендуемый предел концентраций ПАВ при введении

Температура ПАВ при введении в битум или на минеральный материал, °С

Температура битума при введении ПАВ, °С

Наименование ПАВ и активаторов

Технические условия на ПАВ и активаторы

в битум, % от массы битума

на минеральный материал, % от массы минерального материала

Вязкий

Жидкий класс

СГ

мг

Катионактивные Высшие алифатические амины

0,5 - 1,5

0,05 - 0,15

50 - 70

110 - 130

70 - 100

100

БП-3, продукт на основе полиэтиленполиамина и синтетических жирных кислот С21 - С26

ТУ 38-2-01-170-74 с изменением № 2

Амины алифатические С17 - С21 (технические), продукт процесса гидрирующего аминирования жирных кислот

ТУ 6-02-795-73

Флотамин (октадециламин стеариновый технический)

ГОСТ 5.997-71

Анионактивные Высшие карбоновые кислоты

3 - 5

0,2 - 0,3

50 - 70

110 - 130

70 - 100

70 - 100

Смола госсиполовая (хлопковый гудрон), продукт, получаемый в виде кубового остатка при дистилляции жирных кислот, выделенных из хлопкового соапстока

ОСТ 18-114-73

Гудрон жировой, продукт, получаемый при дистилляции жирных кислот, выделенных после расщепления натуральных жиров

ОСТ 18-114-73

Синтетические кислоты С17 - С20

ОСТ 38-7-25-73

Кубовый остаток синтетических жирных кислот

ТУ 38-1-07-54-74

Окисленный петролатум

ОСТ 38-01-117-76

Смолы твердых топлив

10 - 12

1 - 3

50 - 100

110 - 130

70 - 100

70 - 100

Сланцевая низкотемпературная смола (жидкий сланцевый битум в пределах марок от С-2 до С-5)

РСТ ЭССР 82-72

Смола каменноугольная

ГОСТ 4492-69

Смола сосновая

ГОСТ 11238-65

Активаторы

-

1 - 3

-

-

-

-

Известь гидратная

ГОСТ 9179-70

Портландцемент и гидрофобный портландцемент марок 400 - 600

ГОСТ 10178-62

Примечания. 1. Температуры для жидких битумов даны при приготовлении их на асфальтобетонных заводах.

2. Особенности применения ПАВ в случае введения их на минеральный порошок указаны в п. 3.19 и 3.21.

3.44. Класс ПАВ следует выбирать с учетом природы и свойств применяемых минеральных материалов и битума.

3.45. При выборе ПАВ для улучшения сцепления битумов с минеральными материалами предпочтение следует отдавать катионактивным ПАВ типа высших алифатических аминов, улучшающим сцепление битумов с минеральными материалами кислых и основных пород.

Одновременно ПАВ этого типа являются замедлителями старения битумов высокой вязкости.

3.46. ПАВ на асфальтобетонных заводах могут быть введены:

а) в битум. При этом ПАВ вводят в рабочий битумный котел или в дозатор битума перед подачей в мешалку. При введении ПАВ в битумный котел битум может выдерживаться при рабочей температуре не более 3 - 4 ч;

б) на поверхность минерального материала перед обработкой его битумом. В этом случае ПАВ вводят ввиду их небольшого расхода в смеси с пластификатором (1:1). В качестве пластификатора лучше всего использовать применяемый битум, количество которого учитывается при общей дозировке (схемы введения ПАВ см. на рис. 5.7 - 5.9).

3.47. Положительный эффект от применения ПАВ может быть достигнут лишь в случае их использования в оптимальных концентрациях. Оптимальные концентрации в рекомендуемых пределах (см. табл. 3.12) следует уточнять в каждом конкретном случае с учетом природы и свойств применяемых материалов.

Критерием оценки оптимального количества ПАВ служит комплекс физико-механических показателей свойств асфальтобетона. Превышение оптимального количества ПАВ может привести к отрицательному эффекту.

3.48. В тех случаях, когда битум не содержит ПАВ или содержит ПАВ анионного типа для улучшения сцепления битума с кислыми минеральными материалами, рекомендуется применять активаторы (известь, цемент и др.), которые вводят в смесь минеральных материалов до обработки ее битумом в количестве 1 - 3 % от массы минерального материала.

3.49. Более подробные сведения о ПАВ, активаторах и особенностях их применения изложены в «Инструкции по использованию поверхностно-активных веществ при строительстве дорожных покрытий с применением битумов» (ВСН 59-08).

4. ПОДБОР СОСТАВА АСФАЛЬТОБЕТОНА

Общие положения

4.1. При подборе состава асфальтобетона любого вида, типа и марки следует руководствоваться следующим:

а) одним из важных факторов, обеспечивающих требуемое качество асфальтобетона, является зерновой состав его минеральной части. Последний должен придать оптимальную плотность асфальтобетону, а при необходимости - повышенную шероховатость. Когда имеются соответствующие материалы (главным образом крупный или средний песок), минеральную часть асфальтобетона рекомендуется подбирать по принципу непрерывной гранулометрии (см. табл. 1.8 и рис. 1.1 и 1.2) и только при отсутствии крупного или среднего песка (природного или дробленого) следует использовать принцип прерывистой гранулометрии, когда остов из щебня (35 - 65 %) заполняют смесью, не содержащей зерен размером 5 - 0,63 мм (см. табл. 1.8 и рис. 1.3). Минеральную часть холодного асфальтобетона подбирают только по принципу непрерывной гранулометрии (см. табл. 1.9 и рис. 1.4).

Смесь щебня, песка и минерального порошка подбирают таким образом, чтобы кривая зернового состава располагалась в зоне, ограниченной предельными кривыми, и была по возможности плавной без резких переломов.

В соответствии с классификацией асфальтобетона по типам его минеральная часть может быть каркасной и бескаркасной. В асфальтобетоне типа А каркас образуют зерна щебня, количества которых достаточно для создания жесткой пространственной системы, когда эти зерна соприкасаются друг с другом. В песчаном асфальтобетоне каркас хотя и менее жесткий, но создается крупным песком (5 - 1,25 мм). В бескаркасном асфальтобетоне зерна щебня или крупного песка не соприкасаются друг с другом и не создают каркаса. Приблизительно 40 - 45 % щебня (или крупного песка) служит границей между каркасной и бескаркасной системами. Каркасный асфальтобетон, в том числе песчаный типа Г, обладает повышенной сдвигоустойчивостью и рекомендуется для применения в условиях более тяжелого и интенсивного движения автомобилей;

б) качество асфальтобетона можно повысить, применяя активированный минеральный порошок, активированный известью песок, вводя в асфальтобетонную смесь добавки ПАВ, совершенствуя технологический процесс приготовления асфальтобетонных смесей (улучшая качество перемешивания) и повышая степень уплотнения покрытия. Чтобы увеличить прочность и сдвигоустойчивость асфальтобетонов типов В и Д при высоких летних температурах рекомендуется повысить вязкость битума (в пределах, возможных для данного типа асфальтобетона) и увеличить содержание минерального порошка (в рекомендуемых пределах);

в) шероховатость поверхности асфальтобетонных покрытий обеспечивается высоким содержанием щебня (50 - 65 %) из труднополирующихся горных пород (типа А), или применением дробленого песка из труднополирующихся горных пород (тип Г), или применением щебня в сочетании с дробленым песком из труднополирующихся горных пород (типы Б, Бх), а также за счет втапливания черного щебня в поверхностный слой покрытия или за счет устройства шероховатого коврика методом поверхностной обработки (типы Б, Бх, В, Вх, Д и Дх);

г) щебень должен быть прочным, кубовидной или тетраэдальной формы, благодаря чему уменьшается его дробимость при уплотнении и износ при эксплуатации. Для устройства шероховатых покрытий рекомендуется щебень из горных пород мелкозернистой кристаллической структуры, при износе сохраняющий шероховатость естественного окола. Чем меньше окатаны зерна щебня, тем выше сдвигоустойчивость асфальтобетонного покрытия.

Лучшим сцеплением с нефтяным битумом обладают: из изверженных и метаморфических пород - основные и ультраосновные (базальт, диабаз, перидотит, серпентин, габбро и т.п.), из осадочных - карбонатные (известняк, доломит). Последние отличаются повышенной шлифуемостью, что препятствует применению их в асфальтобетоне, предназначенном для устройства покрытий с шероховатой поверхностью. Щебень из кислых горных пород (гранит, сиенит, диорит и др.), как правило, плохо сцепляется с нефтяным битумом. В случае необходимости сцепление можно обеспечить введением ПАВ в битум или активаторов в смесь минеральных материалов;

д) на свойства асфальтобетона (особенно песчаного) значительное влияние оказывает качество песка. Асфальтобетон с дробленым песком более сдвигоустойчив, чем с природным, но требует большей работы катков при уплотнении. Покрытие из песчаного асфальтобетона, полученного на основе дробленого песка (из прочных некарбонатных горных пород), обладает повышенной сдвигоустойчивостью и длительно сохраняющейся шероховатостью поверхности.

Для улучшения качества природный песок рекомендуется активировать известью в процессе механической обработки. Это изменяет адсорбционные свойства поверхности зерен песка. Одновременно зерна природного песка приобретают острогранную форму, что повышает его угол внутреннего трения1;

1 Предложения по повышению качества песчаного асфальтобетона. Балашиха, Моск. обл., Союздорнии, 1970.

Предложения по применению активированных песков в асфальтобетоне. Балашиха, Моск. обл. Союздорнии, 1969.

е) одним из эффективных способов использования гравия для приготовления асфальтобетонных смесей является его дробление с одновременной физико-химической активацией. В процессе такой переработки происходит избирательное дробление (больше измельчаются наиболее слабые зерна), а свежеобразованные поверхности минеральных зерен обрабатываются активирующей смесью, состоящей из ПАВ и битума. Получается качественно новый материал, в котором существенно изменены форма зерен, зерновой и петрографический составы отдельных фракций, свойства поверхности.

Регулируя режим работы дробилки, можно получить минеральную часть, состоящую из требуемого количества щебня, дробленого песка и минерального порошка, частицы которого оказываются наиболее эффективно обработанными активирующей добавкой.

Асфальтобетон с активированным дробленым гравием характеризуется высокой тепло-, водо- и морозостойкостью. Эта технология особое значение имеет для районов, лишенных прочных каменных материалов, но обладающих месторождениями гравия;

ж) минеральный порошок выполняет роль добавки, структурирующий битум и образующий с ним асфальтовяжущее вещество, которое склеивает в монолит зерна щебня и песка. Минеральный порошок придает асфальтобетону надлежащую плотность, прочность и теплостойкость, но при избыточном содержании в горячем асфальтобетоне (а в некоторых случаях и в теплом) обусловливает рост хрупкости и уменьшение деформативности при низких температурах.

В холодном асфальтобетоне оптимальное количество минерального порошка несколько выше, чем в горячем и теплом, так как применяется менее вязкий битум.

Чрезмерное измельчение минерального порошка (удельная поверхность более 6 - 8 тыс. см2 на 1 г) увеличивает его пористость, соответственно и пористость минеральной части асфальтобетона (особенно если порошка более 8 - 10 %), что приводит к повышенному расходу битума. Высокая пористость порошков характерна для многих порошкообразных отходов промышленности (пыли уноса цементных заводов, золы уноса ТЭЦ, фильтрпрессных отходов сахарных заводов и др.).

Примесь глины в минеральном порошке значительно увеличивает способность асфальтобетона к набуханию и снижает его водо- и морозостойкость. При этом, чем меньше вязкость и содержание битума в асфальтобетоне, тем сильнее проявляется отрицательное свойство глины.

Для повышения качества минеральный порошок (в том числе и порошок с некоторым содержанием глинистых примесей) активируют (обрабатывают в процессе размола) смесью ПАВ и битума.

Асфальтобетон с активированным минеральным порошком обладает повышенной прочностью, плотностью, водо- и морозостойкостью. Активированный минеральный порошок в холодном асфальтобетоне, кроме того, способствует сокращению сроков уплотнения и формирования покрытия под движением автомобилей.

В асфальтобетоне с активированным минеральным порошком можно уменьшить содержание битума на 10 - 20 % по сравнению с асфальтобетоном на неактивированном порошке. В I дорожно-климатической зоне и в районах с резко континентальным климатом II зоны для горячего асфальтобетона с активированным минеральным порошком рекомендуется применять битум пониженной вязкости (на 30 - 50 ед. глубины проникания больше, чем рекомендуется табл. 2.1) или активировать минеральный порошок смесью ПАВ с маловязким битумом (БНД 200/300, БНД 130/200). Это повысит устойчивость асфальтобетона против образования трещин при низких температурах. Для холодного асфальтобетона минеральный порошок рекомендуется активировать смесью ПАВ с более вязким битумом;

з) прочность, водо- и морозостойкость асфальтобетона во многом зависят от свойств битума. Вязкие битумы должны обладать комплексом структурно-механических свойств: эластичностью и пластичностью при низкой температуре, достаточной прочностью и теплостойкостью при высокой температуре, стойкостью против старения при технологической переработке и эксплуатации, прочным сцеплением с поверхностью минеральных материалов.

Качество битумов зависит от природы сырья и технологии его переработки.

Жидкие дорожные битумы должны: хорошо обволакивать минеральный материал, обеспечивая требуемую начальную прочность и удобообрабатываемость асфальтобетона; способствовать быстрому формированию структуры покрытия; придавать достаточную прочность, тепло- и морозостойкость покрытию при высокой и низкой температурах в период эксплуатации; обладать прочным сцеплением с поверхностью минеральных материалов, обеспечивая тем самым высокую водостойкость покрытия.

В битуме, как правило, имеется некоторое количество поверхностно-активных соединений (прежде всего асфальтогеновых кислот и их ангидридов). В зависимости от их содержания битум может быть активным (с кислотным числом выше 0,7 мг КОН/г) и неактивным (кислотное число ниже 0,7 мг КОН/г).

Активные битумы, как правило, хорошо сцепляются с сухой поверхностью минеральных материалов карбонатных, ультраосновных и основных пород (известняков, доломитов, базальтов, диабазов и т.п.), содержащих более 50 % окислов тяжелых и щелочно-земельных металлов, и не образуют прочной связи с поверхностью минеральных материалов кислых и ультракислых пород (кварцитов, гранитов, сиенитов, трахитов и т.п.), в составе которых содержится менее 30 % указанных окислов. Неактивные битумы, как правило, плохо сцепляются с поверхностью большинства минеральных материалов.

С влажной поверхностью минеральных материалов сцепление битумов обычно плохое. Сцепление битума с поверхностью минеральных материалов, оказывающее влияние на коррозионную стойкость асфальтобетона, повышают введением ПАВ или использованием активаторов.

Чем более вязкий битум применяется в асфальтобетоне, тем выше прочность последнего. Однако чрезмерно высокая вязкость битума в горячем и теплом асфальтобетоне (для данных климатических условий) может привести к образованию трещин на покрытии, а в холодном - к слеживаемости при хранении;

и) количество битума в смеси должно быть оптимальным, обеспечивающим максимальную прочность асфальтобетона при данном минеральном материале и оптимальную остаточную пористость.

Избыток битума снижает прочность, сдвигоустойчивость и повышает пластичность асфальтобетона, что ведет к образованию сдвигов и волн на покрытии в жаркую погоду. Асфальтобетон с избытком битума характеризуется малой величиной водонасыщения (менее 1 %). Недостаток битума снижает прочность, водо- и морозостойкость (коррозионную стойкость) асфальтобетона. О недостатке битума в асфальтобетоне свидетельствует большая величина водонасыщения.

В южных районах и в засушливом климате (IV и V дорожно-климатические зоны) рекомендуется подбирать асфальтобетон с верхним пределом величины остаточной пористости, особенно для покрытий с шероховатой поверхностью. В холодных асфальтобетонных смесях количество жидкого битума снижают на 10 - 15 % против оптимального, чтобы уменьшить слеживаемость. В связи с этим остаточная пористость лабораторных образцов холодного асфальтобетона значительно выше, чем горячего и теплого. С течением времени в покрытии плотность холодного асфальтобетона становится близкой или равной плотности горячего и теплого асфальтобетона;

к) при подборе состава асфальтобетона с активированным минеральным порошком и активированным песком следует дополнительно руководствоваться «Техническими указаниями по производству активированных минеральных порошков и применению их в асфальтобетоне» (ВСН 113-65) и «Предложениями по применению активированных песков в асфальтобетоне».

4.2. Состав асфальтобетона подбирают в три этапа: определяют качество минеральных материалов и битума, соответствие их свойств установленным требованиям; устанавливают соотношение минеральных материалов (щебня, песка, минерального порошка), при котором минеральная часть асфальтобетона имеет оптимальную плотность; определяют оптимальное содержание битума, обеспечивающее асфальтобетону наилучшие показатели физико-механических свойств при данных минеральных материалах.

Ниже излагается наиболее распространенный метод подбора состава асфальтобетона, согласно которому минеральную часть рассчитывают исходя из зерновых составов, рекомендуемых ГОСТ 9128-76, а количество битума вычисляют исходя из остаточной пористости, установленной для данного вида, типа и марки асфальтобетона (см. табл. 1.4 и 1.5). Подобранный состав уточняют с целью получения наилучших показателей физико-механических свойств стандартных асфальтобетонных образцов.

4.3. Качество минеральных материалов и битума определяют в соответствии с указаниями разделов 3 и 7 данного Руководства.

Расчет состава минеральной части асфальтобетона

4.4. Соотношение масс щебня, песка и минерального порошка рассчитывают исходя из их зерновых составов и требуемого зернового состава минеральной части асфальтобетона (см. таб. 1.8, 1.9, и рис. 1.1 - 1.4). При использовании материалов с удельными весами, различающимися на 0,20 г/см3 и более, необходимо вносить поправки в соотношения минеральных составляющих, увеличивая количество более тяжелых и уменьшая количество более легких на коэффициент

где g1 - удельный вес преобладающего материала и минеральной смеси (щебень, песок);

g2 - удельный вес минерального материала, отличающийся от g1 на 0,20 г/см3 и более.

Например, удельный вес преобладающего материала (щебня или песка) g1 = 2,7 г/см3, а минерального порошка g2 = 2,9 г/см3. Если по расчету требуется 10 % минерального порошка в асфальтобетонной смеси, то его фактическую массу следует принимать

.

При этом на 0,7 % уменьшают количество преобладающего материала (щебня) или другого материала (песка) с близким к нему удельным весом.

Расчет оптимального количества битума в асфальтобетоне

4.5. Оптимальное количество битума рассчитывают исходя из фактической пористости минерального остова лабораторных асфальтобетонных образцов и заданной остаточной пористости асфальтобетона в соответствии с требованиями табл. 1.4, определяемыми по п. 7.24, 7.25 настоящего Руководства.

Лабораторные образцы (три штуки) готовят из асфальтобетонной смеси, в которой битума берут на 0,3 - 0,5 % меньше нижнего предела, указанного в табл. 1.8 и 1.9. Определяют плотность (объемную массу) асфальтобетона, плотность (объемную массу) и удельный вес минерального остова асфальтобетона. Затем рассчитывают пористость минерального остова асфальтобетона и требуемое количество битума:

                            

где  - пористость минерального остова асфальтобетона (образцов), % объема;

r0 - плотность (объемная масса) минерального остова асфальтобетона, г/см3;

g0 - удельный вес минерального остова асфальтобетона, г/см3;

Vпор - заданная остаточная пористость асфальтобетона при +20 °С, % объема;

gб - удельный вес битума при +20 °С, г/см3.

Рассчитав требуемое количество битума, готовят контрольную смесь, формуют три образца и определяют остаточную пористость. Если она соответствует требуемой (для данного вида, типа и марки асфальтобетона), готовят еще одну смесь с тем же количеством битума и формуют образцы в количестве, достаточном для определения всех показателей физико-механических свойств (см. табл. 1.4).

Если остаточная пористость первых трех образцов контрольной смеси меньше или больше требуемой для данного вида асфальтобетона, расчет количества битума и проверку свойств повторяют, при этом в расчет принимают пористость минерального остова асфальтобетона , полученную для контрольной смеси.

Если асфальтобетон с этим количеством битума имеет требуемую остаточную пористость, но по другим показателям (например, по прочности или водостойкости) не соответствует установленным требованиям, необходимо изменить зерновой состав минеральной части (как правило, увеличить количество минерального порошка в допустимых пределах) и повторить расчет оптимального содержания битума.

Подбор состава асфальтобетонной смеси можно считать законченным, если пористость минерального остова и остаточная пористость асфальтобетона (образцов) находятся в требуемых пределах, а остальные показатели физико-механических свойств удовлетворяют требованиям табл. 1.4.

Пример подбора состава асфальтобетонной смеси

4.6. Необходимо подобрать состав мелкозернистого горячего асфальтобетона типа Б для верхнего слоя покрытия. Имеются битум БНД 90/130, гранитный щебень, гранитный дробленый и речной песок, известняковый минеральный порошок, свойства которых соответствуют техническим требованиям, а зерновой состав приведен в табл. 4.1.

Таблица 4.1

Пример расчета зернового состава минеральной части асфальтобетонной смеси

Минеральный материал

Размер отверстий сит, мм

20

15

10

5

2,5

1,25

0,63

0,315

0,14

0,071

Содержание минерального материала мельче данного размера, % массы

 

Исходные минеральные материалы

Щебень 5 - 15 мм

100

95

57

5

-

-

-

-

-

-

Песок дробленый

-

-

-

100

76

44

20

12

4

1

» речной

-

-

-

-

100

73

64

40

20

3

Минеральный порошок

-

-

-

-

-

-

100

93

83

74

 

Расчетные данные

Щебень 45 %

45

43

27

2

-

-

-

-

-

-

Песок дробленый 28 %

28

28

28

28

21

12

6

3

1

0,3

Песок речной 20 %

20

20

20

20

20

14

12

8

4

0,6

Минеральный порошок 7 %

7

7

7

7

7

7

7

6

6

5,2

Итого

100

98

82

57

48

33

25

17

11

6,1

Расчет состава минеральной части асфальтобетонной смеси

Определяют соотношение масс щебня, песка и минерального порошка, при котором зерновой состав смеси этих материалов удовлетворяет требованиям табл. 1.8, а его графическое изображение представляет собой плавную кривую, лежащую в заданных пределах (см. рис. 1.1, в); пористость минерального остова асфальтобетона должна быть в пределах, установленных табл. 1.4.

Расчет количества щебня. По рис. 1.1, в или по табл. 1.8 находят, что щебня крупнее 5 мм (5 - 15 мм) должно быть в смеси 35 - 50 % (так как через сито с отверстиями 5 мм должно проходить 50 - 65 % материала). Требуемое содержание щебня крупнее 5 мм принимают 43 %. Поскольку зерен крупнее 5 мм в щебне содержится 95 % (а в других компонентах нет фракции крупнее 5 мм), то щебня требуется

Полученное значение записывают в табл. 4.1 и рассчитывают содержание в смеси каждой фракции щебня (берут 45 % от значения каждой фракции щебня).

Расчет количества минерального порошка. По рис. 1.1, в или табл. 1.8 определяют, что частиц мельче 0,071 мм во всей минеральной части асфальтобетона должно быть в пределах 6 - 12 %. Для расчета можно принять 6 %. Если в минеральном порошке содержится 74 % частиц мельче 0,071 мм, то минерального порошка в смеси должно быть

Однако следует принять 7 % минерального порошка, так как небольшое количество частиц мельче 0,071 мм имеется в песке. Полученные данные вносят в табл. 4.1 и рассчитывают содержание в смеси каждой фракции минерального порошка (7 % от значения каждой фракции). Количество песка в смеси составит

П = 100 - (Щ + МП) = 100 - (45 + 7) = 48 %.

Соотношение между дробленым и речным песком устанавливают с учетом содержания в них наиболее крупных фракций (крупнее 1,25 мм). Частиц мельче 1,25 мм в смеси должно быть 28 - 39 % (можно принять 34 %), из них 7 % приходится на долю минерального порошка. Следовательно, в смеси песка их должно содержаться не более 27 %. При имеющемся зерновом составе песков количество речного песка рассчитывают следующим образом:

где 73 и 44 - содержание фракций мельче 1,25 мм в речном и дробленом песках;

х - количество речного песка, %;

Можно принять 20 %, тогда количество дробленого песка составит 48 - 20 = 28 %. Рассчитав аналогично предыдущему количество каждой фракции в речном и дробленом песке, записывают полученные данные в соответствующие графы табл. 4.1. Суммируя в каждой вертикальной графе количество частиц меньше данного размера, находят общий зерновой состав смеси минеральных материалов. Сравнение полученного состава с рекомендуемым (см. табл. 1.8) показывает, что полученный зерновой состав соответствует рекомендуемому, а его графическое изображение представляет собой плавную кривую.

Если удельные веса щебня, песка и минерального порошка различаются более чем на 0,20 г/см3, то в соотношение масс компонентов вводят поправку согласно п. 4.1. Аналогично рассчитывают минеральную часть асфальтобетона прерывистой гранулометрии.

Определение оптимального количества битума

Ориентировочное количество битума в асфальтобетонной смеси определяют расчетом. Для этого щебень, песок и минеральный порошок в выбранных соотношениях смешивают с битумом, количество которого в данном случае принимают 5,2 % (на 0,3 % меньше нижнего предела, указанного в табл. 1.8).

Из полученной смеси формуют три образца диаметром и высотой 71,4 мм. Поскольку щебня в асфальтобетонной смеси 45 %, смесь уплотняют комбинированным методом - вибрированием на виброплощадке (180 с под нагрузкой 0,3 × 105 Па (0,3 кгс/см2) с последующим доуплотнением на прессе нагрузкой 200 × 105 Па (200 кгс/см2) (п. 7.18 - 7.19). Через 12 - 42 ч определяют плотность (объемную массу) асфальтобетона (образцов) rа, удельный вес минерального остова асфальтобетона g0 и на основании этих данных вычисляют плотность (объемную массу) минерального остова r0 и пористость минерального остова испытанных образцов асфальтобетона . Зная удельный вес битума gб и выбрав по табл. 1.4 требуемую остаточную пористость асфальтобетона Vпор, рассчитывают ориентировочное количество битума Б по формуле, приведенной в п. 4.5.

Плотность (объемная масса) пробных асфальтобетонных образцов при содержании битума 5,2 % (сверх 100 % минерального остова) равна 2,32 г/см3, удельный вес минерального остова асфальтобетона - 2,68 г/см3, удельный вес битума - 1 г/см3, заданная остаточная пористость асфальтобетона - 4 %.

В этом случае

   

Из контрольной смеси с 6,3 % битума формуют три образца и определяют остаточную пористость. Если она будет в пределах 4,0 ± 0,5 % (как требуется для мелкозернистого асфальтобетона типа Б), готовят новую смесь с таким же количеством битума, формуют 12 образцов и испытывают в соответствии с требованиями табл. 1.4 (по три образца на каждый вид испытания). Для факультативных испытаний на приборе Маршалла готовят дополнительно три образца (п. 7.32). Показатели физико-механических свойств асфальтобетонных образцов должны удовлетворять требованиям, приведенным в табл. 1.4 и 1.6.

5. ПРАВИЛА ПРОИЗВОДСТВА РАБОТ

Общие положения по организации работ на асфальтобетонных заводах

5.1. По способности к передислокации АБЗ делят на передвижные, полустационарные и стационарные. Передвижные работают на одном месте менее одного сезона, полустационарные - один-два сезона и стационарные - более двух сезонов. Для внегородского дорожного строительства характерны передвижные и полустацнонарные АБЗ.

5.2. Мощность оборудования выбирается в зависимости от объемов и сроков строительства. Экономически целесообразно использовать высокопроизводительное передвижное оборудование на притрассовом АБЗ при двух-трех передислокациях в течение строительного сезона.

5.3. Расстояние между АБЗ и местом укладки определяется технологическими условиями, организационными соображениями и экономическими расчетами. Технологические условия ограничивают максимальное время транспортирования горячей смеси 1,5 ч и теплой 2 - 2,5 ч.

5.4. Уровень основных технических решений вновь строящихся АБЗ должен соответствовать действующим типовым проектам. Способы приема компонентов смесей, складирование и внутризаводское транспортирование должны исключать снижение их качества и загрязнение окружающей среды.

5.5. Для приемки щебня необходимо, как правило, применение подрельсового приемного устройства. Складирование должно осуществляться на подготовленной площадке без смешения фракций.

Методы выгрузки битума из вагонов и конструкция битумохранилища должны исключать его обводнение и загрязнение.

5.6. Минеральный порошок из вагонов подают пневмотранспортом на склады бункерного (силосного) типа прирельсовой базы или в расходные емкости притрассового передвижного завода. Хранение активированных порошков допускается также на складах амбарного типа.

При длительном хранении в бункерах и силосных банках минеральных порошков (в том числе и активированных, складируемых в неостывшем состоянии) надо принимать меры против их слеживания (аэрирование, перекачивание порошка и др.).

Для подачи минерального порошка к смесительному агрегату используют при малом расстоянии механический транспорт (шнеки, вертикальные элеваторы), а при большом - пневмотранспорт.

5.7. Склад песка и щебня на прирельсовом АБЗ или базе каменных материалов устраивают радиально-штабелирующим конвейером. Подачу материалов от склада к агрегату питания смесительного оборудования обеспечивают надземными средствами транспорта - ленточными конвейерами или фронтальными погрузчиками.

5.8. Для притрассовых заводов характерны доставка каменных материалов от прирельсовой базы снабжения (преимущественно вне строительного сезона) или их размещение в карьере, а также небольшой запас битума и минерального порошка - на одну - пять смен в зависимости от производительности АБЗ и организационных условий. Минеральный порошок и битум доставляют к передвижному АБЗ в цементо- и битумовозах.

5.9. В зависимости от комплектности применяемого асфальтосмесительного оборудования целесообразно использовать различные варианты генерального плана АБЗ (рис. 5.1) в прирельсовом варианте. В притрассовом варианте АБЗ вследствие отсутствия хранилищ битума и минерального порошка схема генерального плана упрощается.

5.10. Отгружаемую асфальтобетонную смесь снабжают паспортом с указанием наименования завода, номера и даты выдачи паспорта, наименования и адреса потребителя, вида, состава, массы и температуры смеси.

5.11. Асфальтобетонные смеси поставляют партиями. При отгрузке автомобилями партией считают массу смесей одного вида, отгруженной одному потребителю за одну смену. При отгрузке холодных смесей железнодорожным или водным транспортом партией считают массу смеси одного вида, отгруженной одному потребителю в одном железнодорожном вагоне или в одной барже. Массу смесей при отправке судами определяют по осадке судна.

Рис. 5.1. Примеры технологических линий приготовления асфальтобетонных смесей. Вариант 1 - размещение асфальтосмесительного оборудования без агрегата питания. Вариант 2 - размещение асфальтосмесительного оборудования с агрегатом питания:

1 - железнодорожная ветка; 2 - приемное устройство с подрельсовым бункером; 3 - склад фракционированных каменных материалов; 4 - выносной конвейер; 5 - радиально-штабелирующий конвейер; 6 - силосный склад минерального порошка; 7 - крытое битумохранилище; 8 - оборудование для приготовления ПАВ или полимернобитумных вяжущих; 9 - асфальтосмесительное оборудование; 10 - ленточный конвейер; 11 - бункер; 12 - агрегат питания; 13 - фронтальный погрузчик

5.12. АБЗ должен быть оборудован системой очистки отходящих газов, обеспечивающей соблюдение требований действующих санитарных норм. Пожароопасные участки технологической линии АБЗ должны быть оборудованы средствами тушения и согласованы с местной пожарной инспекцией.

5.13. На территории АБЗ должно быть весовое отделение, механическая мастерская, лаборатория, склад ТСМ, битовые помещения, столовая или буфет.

Приготовление асфальтобетонных смесей

5.14. Современное асфальтосмесительное оборудование представляет собой комплект, включающий агрегат питания, сушильный и смесительный агрегаты, накопительный бункер, емкости для битума, минерального порошка и мазута, кабину управления и все необходимые средства вертикального и горизонтального транспорта компонентов смесей. Комплекты производительностью 12, 25, 50, 100 и 200 т/ч (см. приложение 1.1) могут работать в автоматическом и дистанционном режимах управления.

5.15. Схема основной технологической линии приготовления асфальтобетонных смесей представлена на рис. 5.2.

5.16. Для нагрева и обезвоживания битума применяют битумоплавильное оборудование непрерывного и периодического действия. В установках непрерывного действия с газовым или электрическим подогревом процесс обезвоживания происходит в тонком слое. Установки периодического действия состоят из нескольких битумоплавильных котлов. В этом случае вязкий битум готовят по двухступенчатому циклу: в одних котлах битум нагревают до 110 - 120 °С и при необходимости выпаривают воду, затем перекачивают в другие (расходные) котлы и нагревают до рабочей температуры.

Рис. 5.2. Схема технологической линии приготовления асфальтобетонных смесей

Таблица 5.1

Температура нагрева битума для асфальтобетонных смесей

Марка битума

Температура нагрева, °С

без ПАВ

с ПАВ

БНД 90/130, БН 90/130, БНД 60/90, БН 60/90, БНД 40/60

130 - 150

110 - 130

БНД 200/300, БНД 130/200, БН 200/300, БН 130/200

100 - 120

90 - 110

СГ 130/200

90 - 100

90 - 100

СГ 70/130, МГ 70/130

80 - 90

80 - 90

БГ 70/130

70 - 80

70 - 80

5.17. Не разрешается применять обводненный и пенистый битум. Обводнение битума должно быть полностью исключено правильной организацией битумного хозяйства: применением исключительно закрытых хранилищ, битумоплавильных установок и рабочих (расходных) котлов.

Для предотвращения вспенивания битума в процессе выпаривания воды следует применять механические мешалки, интенсивную циркуляцию битума с помощью насоса или противопенные химические препараты - МКТ-1 (4 - 6 капель) или полисилоксановый каучук СКТН-1 (2 - 3 капли) на 10 т битума. При этом котлы заполняют не более чем на 75 - 80 % их емкости.

5.18. При необходимости введения в битум ПАВ или разжижителя битум готовят по трехступенчатому циклу: после разогрева и выпаривания воды битум перекачивают в свободные котлы, где объединяют с ПАВ или разжижителем, а затем перекачивают в расходные котлы и нагревают до рабочей температуры.

5.19. Узел приготовления и введения ПАВ в битум должен быть включен в общую систему автоматического дистанционного управления заводом.

5.20. При отсутствии жидкого битума требуемой вязкости его готовят на АБЗ, разжижая вязкий битум в соответствии с пп. 3.37 и 3.38 и табл. 3.11.

5.21. Жидкий битум готовят в отдельном битумном котле, оборудованном пароподогревом. В разогретый и обезвоженный вязкий битум, имеющий температуру в пределах 90 - 110 °С в зависимости от класса приготовляемого битума (см. п. 3.38), добавляют небольшими порциями разжижитель при постоянном перемешивании до получения однородного материала.

5.22. Температура нагрева битума для асфальтобетонных смесей в зависимости от марки битума должна соответствовать указанной в табл. 5.1.

Указанную в табл. 5.1 температуру нагрева битумов можно поддерживать не более 5 ч. Разрешается поддерживать температуру вязких битумов не выше 80 °С, жидких битумов класса МГ - не выше 60 °С не более 12 ч.

5.23. В современных комплектах асфальтобетонного оборудования битум дозируют объемными дозаторами при периодическом режиме перемешивания или счетчиками при применении смесителей непрерывного действия.

5.24. Щебень и песок до поступления в сушильный барабан предварительно дозируют, точное весовое дозирование осуществляют после высушивания, нагрева и сортировки.

Для предварительного дозирования минеральных материалов используют агрегаты питания, управляемые дистанционно с пульта оператора. Загрузку бункеров агрегата питания целесообразно производить фронтальными погрузчиками.

Точность работы дозаторов агрегата питания ± 5 %. При работе с очень влажными материалами вводят поправку на их влажность.

Просушенные и нагретые в сушильном барабане щебень и песок горячим элеватором подают на грохот для фракционирования и сортировки по отдельным отсекам горячего бункера. Далее осуществляют окончательное их дозирование весовым дозатором.

Минеральный порошок (активированный или неактивированный) в холодном состоянии подают отдельным элеватором или пневмотранспортом в соответствующий отсек бункера на общие весы или через отдельный дозатор непосредственно в мешалку.

5.25. Режим просушивания и нагрева минеральных материалов должен обеспечивать не только заданную температуру, но и полное удаление влаги. При применении ПАВ допускается влажность минеральных материалов при приготовлении горячих смесей не более 1 %, теплых и холодных - не более 3 %.

5.26. При подаче минерального порошка в холодном виде непосредственно в мешалку температура остальных материалов должна быть повышена с тем, чтобы смесь имела температуру, указанную в табл. 5.3.

5.27. Погрешность при дозировании компонентов асфальтобетонной смеси не должна превышать следующих значений:

для щебня (гравия), песка и минерального порошка, применяемых для приготовления асфальтобетонов I и II марок ± 3 %, применяемых для приготовления асфальтобетонов III и IV марок ± 5 % от массы соответствующего компонента;

для битумов независимо от марки асфальтобетона ± 1,5 % от их массы.

5.28. Особое внимание должно быть уделено перемешиванию минеральных материалов с битумом. Тщательно перемешанная смесь характеризуется равномерным распределением всех ее компонентов и полным обволакиванием поверхности частиц битумом. Продолжительность перемешивания приведена в табл. 5.2.

5.29. Температура смесей при выпуске из смесителя в зависимости от марки битума должна соответствовать табл. 5.3.

5.30. Накопительный бункер (рис. 5.3) является промежуточным складом для хранения готовых смесей. Его вместимость должна быть не менее половины объема выпуска смеси за 1 ч. Бункер имеет теплоизоляцию, а также обогрев выгрузочной воронки и затвора. Во избежание расслоения смесей при загрузке бункера целесообразно использовать ковши с донной выгрузкой. В накопительных бункерах, не имеющих специальных систем защиты битума от интенсивного старения при длительном хранении, разрешается кратковременное хранение смесей (не более 4 ч).

5.31. Во избежание прилипания смеси к кузову его предварительно опрыскивают нефтью или мыльным раствором.

Таблица 5.2

Продолжительность перемешивания горячих и теплых асфальтобетонных смесей

Вид смеси

Продолжительность перемешивания смесей, в лопастных мешалках принудительного действия, с

Сухое перемешивание

Мокрое перемешивание

Песчаные

15

45 - 60

Мелко- и среднезернистые

15

30 - 45

Крупнозернистые

-

20 - 30

Примечания. 1. Продолжительность перемешивания песчаных, мелко- и среднезернистых смесей в машинах старых моделей со схемой противоточного движения материалов должна быть увеличена в 1,5 - 2 раза.

2. Продолжительность мокрого перемешивания следует увеличивать при уменьшении содержания битума или увеличении содержания минерального порошка. Она уточняется при корректировании состава смеси на АБЗ.

3. При применении поверхностно-активных веществ, а также активированного минерального порошка продолжительность мокрого перемешивании может быть уменьшена на 15 - 30 %.

4. Продолжительность перемешивания крупнозернистых смесей в мешалках свободного перемешивания 120 - 180 с.

5. Продолжительность перемешивания холодных смесей в 1,3 - 1,5 раза превышает продолжительность приготовления однотипных горячих смесей вследствие малого содержания в них битума.

Таблица 5.3

Температура асфальтобетонных смесей при выпуске из смесителя

Вид смеси

Марка битума

Температура смеси, °С

без ПАВ

с ПАВ

Горячие

БНД 90/130, БН 90/130, БНД 60/90, БН 60/90, БНД 40/60

140 - 160

120 - 140

Теплые

110 - 130

100 - 120

БГ 70/130

80 - 100

 

СГ 130/200

90 - 110

80 - 100

Холодные

СГ 70/130

90 - 110

 

МГ 70/130

90 - 120

80 - 100

5.32. Если пониженная температура воздуха и продолжительность транспортирования приводят к снижению температуры готовой смеси ниже требуемой, то применяют обогрев кузова и смесь в нем покрывают брезентом.

5.33. Холодные асфальтобетонные смеси готовят по той же технологической схеме (см. рис. 5.2), что и горячие или теплые.

5.34. До подачи асфальтобетонной смеси на склад должны быть выполнены мероприятия, предотвращающие ее слеживаемость.

5.35. Холодные асфальтобетонные смеси хранят на АБЗ или притрассовых складах в штабелях не выше 2 м*. Площадки и склады, предназначенные для хранения холодных асфальтобетонных смесей, должны быть хорошо спланированы, очищены и обеспечены водоотводом. При хранении смесь не должна загрязняться и подвергаться уплотнению (заездом автомобилей и т.п.). Холодные асфальтобетонные смеси можно хранить 4 - 8 мес при применении соответственно битумов класса СГ и МГ.

* В летний период смеси можно хранить на открытых площадках, в осенне-зимний - в закрытых складах или под навесом.

Рис. 5.3. Схема работы накопительного бункера:

1 - затвор ковша скипового подъемника; 2 - нижний конечный выключатель; 3 - ковш скипового подъемника; 4 - направляющая воронка; 5 - смеситель; 6 - тяговый канат; 7 - скиповый путь; 8 - верхний конечный выключатель; 9 - накопительный бункер; 10 - лебедка; 11 - цилиндр затвора бункера; 12 - затвор накопительного бункера; 13 - пульт управления затвором бункера; 14 - рама бункера; 15 - лоток для промежуточной выгрузки; 16 - светофор

5.36. Холодную асфальтобетонную смесь можно доставлять к месту укладки по железной дороге, воде, автомобилями.

В железнодорожные вагоны, автомобили и другие транспортные средства холодные асфальтобетонные смеси необходимо грузить экскаваторами, транспортерами, автопогрузчиками и др. При погрузке смесь должна быть рыхлой и иметь температуру не выше 30 °С летом и не выше 25 °С зимой во избежание слеживаемости в процессе транспортирования.

Холодные асфальтобетонные смеси при более высоких температурах можно перевозить только автомобилями на небольшие расстояния (до 50 км).

Приготовление активированных минеральных материалов. Введение в асфальтобетонную смесь поверхностно-активных веществ

5.37. Одним из способов улучшения свойств минеральных материалов, входящих в состав асфальтобетонной смеси (минеральный порошок, гравий, песок и другие материалы), является их физико-химическая активация с использованием соответствующих активирующих смесей или активаторов.

5.38. Активированный минеральный порошок приготавливают на специальных заводах или в отдельных цехах АБЗ. Требования к активированным минеральным порошкам приведены в п. 3.28.

Производство активированного минерального порошка (рис. 5.4) включает следующие процессы1: сушку дробленого материала в сушильных барабанах; подогрев до рабочих температур битума и ПАВ, приготовление из них активирующей смеси; дозирование просушенного щебня и активирующей смеси, перемешивание щебня с активирующей смесью в мешалках любого типа (предпочтительнее в лопастных), подачу минерального материала, объединенного с активирующей смесью, в помольную установку и размол его до требуемой тонкости помола; подачу готового активированного минерального порошка в накопительные бункера или на склад (силосного или бункерного типа).

1 Подробно см. «Технические указания по производству активированных минеральных порошков и применению их в асфальтовом бетоне» (ВСН 113-65).

В состав помольных установок для производства активированного минерального порошка могут также входить молотковые или валковые дробилки для предварительного измельчения известнякового щебня перед просушиванием.

Рис. 5.4. Технологическая схема установки приготовления активированного минерального порошка:

1 - накопительный бункер для отсева или щебня; 2 - транспортер для подачи отсева или щебня в накопительный бункер; 3 - транспортер для питания сушильного барабана; 4 - сушильно-смесительный агрегат; 5 - дозировочный бачок для активирующего материала; 6 - транспортер для подачи материала в накопительный бункер; 7 - накопительный бункер; 8 - тарельчатый питатель; 9 - шаровая мельница; 10 - элеватор для активированного минерального порошка; 11 - раздаточный бункер; 12 - шнек для загрузки транспортных средств

Рис. 5.5. Технологическая схема установки для приготовления асфальтобетонных смесей из активированных продуктов дробления гравия:

1 - питатель-дозатор; 2 - холодный элеватор; 3 - грохот; 4, 6, 16, 18 - питающие и отводящие лотки; 5 - сушильный барабан; 7 - дозатор активирующего материала; 8 - горячий элеватор; 9 - сортировочный агрегат; 10 - лоток отвода крупных частиц в молотковую дробилку; 11 - дозатор минерального материала; 12 - лопастная мешалка; 13 - дозатор и труба для ввода битума в мешалку; 14 - молотковая дробилка; 15 - питатель сушильного барабана; 17 - валковая дробилка

5.39. Для получения обогащенного активированного гравия рекомендуется дооборудовать АБЗ специальными агрегатами дробления и приготовления активирующей смеси, включаемыми в общую технологическую схему приготовления асфальтобетонной смеси (рис. 5.5).

Исходный гравийный материал размером 5 - 70 мм поступает в агрегат обогащения, где из накопительного бункера через питатель-дозатор 1 подается на элеватор 2, которым поднимается на грохот 3. При помощи сетки с ячейками 25´25 мм* материал сортируется по двум размерам. Гравий размером 5 - 25 мм по питателю 15 поступает в сушильный барабан 5. Гравий крупнее 25 мм направляется по лотку 16 в валковую дробилку 17 для предварительного дробления, откуда продукты дробления снова подают в питатель-дозатор. Гравий размером 5 - 25 мм (вместе с материалом, прошедшим дробилку) направляют в сушильный барабан 5. Нагретый до заданной температуры материал по лотку 6 попадает в молотковую дробилку 14. В закрытый лоток 6, по которому материал идет в дробилку 14, подается активирующая смесь при помощи дозатора 7. Количество активирующего материала (смеси) регулируется в установленных пределах. Постоянство потока минеральных материалов обеспечивается питателем-дозатором 1 или специальным дозатором, установленным между сушильным барабаном и дробилкой.

* Максимальный размер зерен назначают в зависимости от качества исходного гравийного материала и назначения асфальтобетонной смеси.

Дробление гравийного материала в молотковой дробилке происходит в присутствии активирующей смеси, адсорбирующейся на свежеобразованных поверхностях минеральных частиц.

Режимом работы молотковой дробилки регулируется гранулометрический состав минеральной смеси. Практически поддерживается такой режим работы дробилки, при котором продукт дробления представляет собой готовую минеральную смесь для приготовления асфальтобетона, состоящую из требуемого количества щебня, искусственного песка и минерального порошка.

Затем активированные продукты дробления гравия подают при помощи элеватора 8 в лопастную мешалку 12 асфальтобетонной установки и перемешивают с заданным количеством битума. Готовую асфальтобетонную смесь подают в накопительный бункер или непосредственно в кузов автомобиля-самосвала.

5.40. Одним из способов улучшения свойств песков, в том числе не удовлетворяющих требованиям ГОСТ 9128-76 по модулю крупности, является их активация с использованием гидратной извести (извести-пушонки). Установку по активации песка (рис. 5.6) комплектуют из серийно выпускаемых агрегатов и машин и включают в общую технологическую линию приготовления асфальтобетонных смесей.

Технология приготовления активированных песков состоит в следующем. Из приемной емкости 1 гидратную известь винтовым конвейером 2 и ковшовым элеватором 3 подают в расходный бункер 4 (в данном случае двухсекционный). Далее объемными дозаторами непрерывного действия 5 обеспечивают необходимую скорость подачи извести в виброшаровые мельницы 13, куда в заданном количестве через дозаторы 11 поступает после просушки в сушильном барабане 7 и отгрохотки на виброгрохоте 9 природный песок.

Из вибромельницы активированный песок винтовым конвейером (шнеком) 14 и элеватором 15 подают на дозатор смесителя асфальтобетонной установки.

В качестве основного агрегата узла активации могут быть использованы переоборудованные виброшаровые мельницы серийного промышленного производства (типа М-1000, М-400 и другие, в том числе М-230 - спаренные).

Практикой установлено, что для повышения производительности виброшаровых мельниц при активации песка необходимо: устроить второй люк в нижней части мельницы для быстрого выпуска активированного песка; установить колосниковую решетку с расстоянием между колосниками 8 - 9 мм; закрыть верхние боковые отверстия, служащие для загрузки мельницы, и загружать среднюю верхнюю часть мельницы; виброшаровые мельницы загружать шарами диаметром 18 - 20 мм (для мельниц типа М-230 - 400 кг для М-400 - 750 кг и для М-1000 - 1500 кг).

Оборудование для активации песка должно допускать работу с песком, нагретым до 250 °С. Точность дозирования песка и извести должна быть в пределах ± 3 % по массе материала. Во время работы необходимо следить за бесперебойной подачей извести в мельницу, предупреждая сводообразование, особенно в расходном бункере извести, а также за системой охлаждения подшипников виброшаровых мельниц, не допуская перегрева воды выше 50 °С.

5.41. Дозирование ПАВ и введение их в асфальтобетонные смесители осуществляется с помощью специального оборудования (конструкции Союздорнии - ПКБ Главстроймеханизации) или дополнительных дозаторов, выпускаемых промышленностью в комплексе серийных асфальтобетонных установок.

Указанное оборудование (модели 5590-1-А-ПКБ) предназначено для хранения, подогрева, дозирования и введения ПАВ в битум - в дозатор битума, битумоплавильный котел (рис. 5.7) или в асфальтобетонную смесь - в мешалку (рис. 5.8). Система введения ПАВ в мешалку и дозатор - принудительная, под давлением, а в битумоплавильный котел - самотеком; пределы дозирования 0,25 - 4,2 л; обогрев - паровой с расходом пара при давлении 5 × 105 Па (5 кгс/см2) 75 кг/ч на один смеситель или электромасляный.

Загрузка ПАВ в хранилище может производиться из железнодорожных цистерн, автобитумовозов самотеком или с помощью битумного насоса; возможен прием ПАВ, затаренных в металлические бочки. В хранилище 1 (см. рис. 5.7) происходит нагрев ПАВ с помощью регистров и змеевика 2 до температуры, обеспечивающей текучесть. Затем ПАВ вводят в битумную цистерну битумоплавильной установки 5 и перемешивают с битумом путем циркуляции с помощью битумного насоса, а далее битум с ПАВ подают как обычно в дозатор битума асфальтобетонной установки.

При подаче ПАВ из хранилища непосредственно в дозатор битума мешалки (рис. 5.9) его закачивают в расходный бак 1 и доводят до рабочей температуры (см. табл. 3.12). Из расходного бака ПАВ самотеком поступает в объемный дозатор ПАВ 2. При заполнении дозатора до заданного уровня кран 7 перекрывается электровинтовым приводом. Подачу ПАВ из этого дозатора в дозатор битума мешалки производят шестеренчатым насосом 6, включение и выключение которого осуществляет выключатель 8.

Рис. 5.6. Схема установки для активации песка с использованием двух виброшаровых мельниц типа М-400:

1 - приемная емкость для гидратной извести; 2 - винтовой конвейер; 3 - ковшовый элеватор; 4 - двухсекционный бункер гидратной извести; 5 - дозаторы извести; 6 - элеватор для подачи песка в сушильный барабан; 7 - сушильный барабан; 8 - элеватор песка; 9 - виброгрохот; 10 - бункер песка; 11 - дозаторы песка; 12 - винтовой конвейер для подачи извести в вибромельницы; 13 - виброшаровые мельницы типа М-400; 14 - винтовой конвейер для подачи активированного песка на элеватор; 15 - элеватор для подачи активизированного песка на дозатор смесителя асфальтобетонной установки

Рис. 5.7. Блок хранения и подачи ПАВ в битум битумоплавильной установки:

1 - цистерна-хранилище ПАВ емкостью 10 м3; 2 - обогревательные регистры для подогрева ПАВ и битума; 3 - трубопровод для ПАВ; 4 - битумный насос с фильтром для перекачки ПАВ; 5 - цистерна битумоплавильной установки; 6 - бак-дозатор ПАВ; 7 - пробковый кран слива отмеренного количества ПАВ; 8 - битумопаропровод для ПАВ

Рис. 5.8. Узел подачи ПАВ к смесительному агрегату:

1 - система ввода ПАВ непосредственно в весовой дозатор битума; 2 - лопастная мешалка; 3 - блок подачи ПАВ к смесительному агрегату; 4 - объемный дозатор ПАВ; 5 - трубопроводы для ПАВ и битума

Рис. 5.9. Схема подачи и система ввода ПАВ в дозатор битума смесительного агрегата:

1 - расходный бак ПАВ с поплавком; 2 - объемный дозатор ПАВ (доза от 0,25 до 4,2 л); 3 - дозатор битума; 4 - сливная труба для битума; 5 - трубопровод для ПАВ; 6 - шестеренчатый насос с приводом для впрыска ПАВ производительностью 12 л/мин; 7 - пробковый кран с паровой рубашкой; 8 - микропереключатели кранов; 9 - труба с противовесом-грузиком; 10 - подача битума в дозатор

Устройство асфальтобетонных покрытий

5.42. Покрытия из горячей асфальтобетонной смеси устраивают в сухую погоду весной и летом, когда температура воздуха не ниже 5 °С, а осенью не ниже 10 °С, из теплой асфальтобетонной смеси - в сухую погоду при температуре воздуха до -10 °С.

Допускается устраивать покрытия из горячих асфальтобетонных смесей при температуре воздуха ниже 5 °С и из теплых при температуре ниже -10 °С, руководствуясь указаниями п. 5.124 - 5.132.

Покрытия из холодных асфальтобетонных смесей следует устраивать в сухую погоду весной и летом при температуре воздуха не ниже 5 °С и осенью не ниже 10 °С, но с учетом времени, необходимого для нормального формирования покрытия до начала осенних дождей.

5.43. Работы по устройству асфальтобетонных покрытий ведут, как правило, в две смены. В дневное время рекомендуется укладывать верхний слой. В третью смену следует выполнять техническое обслуживание машин, установок, агрегатов и систем автоматического управления.

5.44. Ровность асфальтобетонного покрытия обеспечивается: надлежащей планировкой и тщательным уплотнением каждого слоя дорожной одежды; высокой ровностью и плотностью земляного полотна и основания; уплотнением покрытия до нормируемой плотности; сокращением количества поперечных сопряжений; тщательным контролем производства работ.

Кроме того, для достижения требуемой ровности следует устраивать дорожную одежду на второй год после возведения земляного полотна в случаях, если земляное полотно устраивают в зимний период, если земляное полотно устраивают на болоте, если высота земляного полотна превышает 3 м.

Повышению ровности асфальтобетонных покрытий способствует применение асфальтоукладчиков с автоматической системой обеспечения заданной ровности покрытия и толщины слоя.

5.45. Асфальтобетонное покрытие устраивают на сухом, чистом и непромерзшем основании.

Для хорошего сцепления покрытия с основанием последнее перед укладкой асфальтобетонной смеси должно быть очищено от грязи и пыли механическими щетками, сжатым воздухом от передвижного компрессора или другими средствами. Влажное основание может быть просушено песком, нагретым до 250 - 300 °С, а также специальными нагревателями.

5.46. Перед укладкой асфальтобетонной смеси основание или нижний слой асфальтобетонного покрытия при необходимости обрабатывают битумной эмульсией или жидкими битумами СГ-70/130 (см. п.п. 3.36 и 3.37). Эмульсию или жидкие битумы разливают за 3 - 5 ч до начала укладки.

На обработку 1 м2 основания или нижнего слоя асфальтобетонного покрытия соответственно расходуется 0,5 - 0,8 и 0,2 - 0,3 л битума. Если для тех же целей используется 60 %-ная битумная эмульсия, то ее расход соответственно составит 0,6 - 0,9 и 0,3 - 0,4 л.

Обработку вяжущими материалами можно исключить, если покрытие устраивают на свежеуложенном основании, построенном с применением органического вяжущего, а также при укладке верхнего слоя на свежеуложенный нижний слой.

5.47. На участках с продольным уклоном, превышающим 40 ‰, устройство асфальтобетонного покрытия следует осуществлять вверх по уклону.

5.48. Для выравнивания старого основания с поперечным уклоном, превышающим нормативный, следует укладывать слой пористого асфальтобетона при толщине выравнивающего слоя менее 5 см или черного щебня при толщине слоя более 5 см.

Таблица 5.4

Температура асфальтобетонных смесей в асфальтоукладчике перед укладкой в конструктивный слой

Виды смеси

Марка битума

Температура смеси, °С, не ниже

без ПАВ

с ПАВ

Горячие

БНД 90/130, БН 90/130, БНД 60/90, БН 60/90, БНД 40/60

120

100

Теплые

БНД 200/300, БН 200/300, БНД 130/200, БН 130/200

80

80

БГ 70/130, СГ 130/200

70

70

Холодные

СГ 70/130, МГ 70/130

Не ниже 5° весной и 10° осенью

Примечание. При устройстве конструктивных слоев дорожных одежд при пониженных температурах воздуха в случае использования вязких битумов температура смесей должна быть на 10° выше указанной в табл. 5.4.

5.49. Перед укладкой асфальтобетонной смеси необходимо выполнить разбивочные работы, которые позволят выдержать проектную ширину покрытия и поперечные уклоны, а также прямолинейность кромок с помощью нивелира или визирок, нанесением белой или цветной линии на бордюрной ленте и другими способами.

5.50. Минимально допустимая температура смеси при укладке в зависимости от марки битума должна соответствовать табл. 5.4.

Температуру смеси необходимо проверять в каждом прибывающем автомобиле-самосвале.

5.51. Для устройства асфальтобетонного покрытия должны быть созданы механизированные звенья (рис. 5.10) в составе: самоходного асфальтоукладчика, моторных катков, вспомогательных машин и приспособлений - по потребности (дорожные щетки, передвижные битумные котлы, жаровни, инструмент, осветительная электростанция и т.п.).

Подбор оборудования механизированных звеньев для линейных работ зависит от типа асфальтобетонной смеси, принятой скорости потока, длины сменной захватки (250 - 500 м). При устройстве покрытий из горячего и теплого асфальтобетонов в звено укладки должны быть включены один или два асфальтоукладчика и в среднем не менее трех катков на каждый укладчик (рекомендуется один легкий и два тяжелых катка или один самоходный каток на пневматических шинах и два тяжелых).

5.52. При больших объемах работ, а также при устройстве покрытий из смесей типа А и Г их обязательно укладывают одновременно и непрерывно двумя или тремя асфальтоукладчиками на всю ширину покрытия, что обеспечивает хорошее продольное сопряжение полос.

При работе двух укладчиков одновременно на смежных полосах опережение одного из них относительно другого должно быть в пределах 10 - 30 м.

5.53. Рекомендуется применять асфальтоукладчики преимущественно новых моделей на пневмоколесном или гусеничном ходу с шириной укладываемой полосы до 7,5 м (за один проход) и с автоматической системой, обеспечивающей ровность покрытия и точное соблюдение заданного поперечного профиля.


Рис. 5.10. Технологическая схема устройства асфальтобетонного покрытия:

1 - механическая щетка; 2 - передвижной битумный котел; 3 - сушильный агрегат; 4 - асфальтоукладчик; 5 - моторный каток весом до 8 т; 6 - жаровня для инструмента (лопата, грабли, трамбовка, утюг); 7 - моторный каток весом до 15 т; 8 - автомобиль-самосвал с асфальтобетонной смесью; L - сменная захватка; l1, l2, l3 - частные захватки по технологическому процессу


5.54. Ширину п