регистрация компании дать объявление быстрый поиск лента публикаций восстановление доступа о портале
    
Строительный портал СтройПлан.ру
Подбор проекта Новости отраслиПубликации
 
КОРЗИНА (0)  
 >>>  ПОИСК ДОКУМЕНТОВ  
  Дополнительные материалы  [ + развернуть]  
Утвержден: Главный государственный санитарный врач РФ
Дата введения: 1 января 2001 г.
скачать бесплатно СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод"
Утвержден: Главный государственный санитарный врач РФ
Дата введения: 18 ноября 2005 г.
скачать бесплатно МУК 4.3.2030-05 "Санитарно-вирусологический контроль эффективности обеззараживания питьевых и сточных вод УФ-облучением"
Утвержден: Главный государственный санитарный врач РФ
Дата введения: 18 ноября 2005 г.
скачать бесплатно МУК 4.2.2029-05 "Санитарно-вирусологический контроль водных объектов"

4.1. Методы контроля. Биологические и микробиологические факторы

Санитарно-микробиологический и санитарно-паразитологический анализ воды поверхностных водных объектов

Методические указания
МУК 4.2.1884-04

1. Разработаны: НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН (Ю.А. Рахманин, А.Е. Недачин, Т.З. Артемова, Т.В. Доскина, Р.А. Дмитриева, Л.В. Иванова); ИМПиТМ им. Е.И. Марциновского ММА им. И.М. Сеченова (В.П. Сергиев, Г.И. Новосильцев, А.И. Чернышенко, В.И. Касьянов); Федеральным центром Госсанэпиднадзора Минздрава России (Н.С. Кривопалова, Т.Н. Цыбина); НИИ коммунального водоснабжения и очистки воды (Н.А. Русанова); НИИ полиомиелита и вирусных энцефалитов им. М.П. Чумакова (О.Е. Иванова, Т.П. Еремеева, В.Б. Конторович); Ростовским-на-Дону НИИ микробиологии и паразитологии Минздрава России (В.В. Алешня, П.В. Журавлев, С.В. Головина); кафедрой паразитологии, паразитарных и тропических болезней МПФ ППО ММА им. И.М. Сеченова (Н.А. Романенко, Е.А. Черникова, М.В. Солдатова, М.С. Ещенко); Федеральным научным центром гигиены им. Ф.Ф. Эрисмана (Г.М. Трухина); Центром Госсанэпиднадзора в г. Москве (Н.И. Тимошенко, Е.Г. Белова); Департаментом Госсанэпиднадзора Минздрава России (С.С. Перель, З.С. Середа); Курским государственным университетом (Н.А. Плехова, С.С. Пехова, Е.Л. Дмитриева, О.В. Ходзаева, Н.С. Малышева, М.К. Лунева, О.В. Емельянова, Н.А. Самофалова, Ю.Ф. Мелихов); Белгород-Днестровским центром Госсанэпиднадзора (Т.Я. Погорельчук, В.А. Олейник); Тюменским НИИ краевой инфекционной патологии Минздрава России (Т.Ф. Степанова).

Использованы материалы ГУП «Мосводоканал» (Г.П. Кашкарова); Аналитического центра «РОСА» (В.Е. Ларин); Фирмы «Стайлаб» (А В. Галкин); Центра Госсанэпиднадзора Краснодарского края (Л.И. Щербина); Центра Госсанэпиднадзора Тульской области (Т.А. Попова); Московского НИИ генетики (Н.Б. Бавыкина).

2. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации Г.Г. Онищенко 3 марта 2004 г.

3. Введены взамен МУ 2285-81 «Методические указания по санитарно-микробиологическому анализу воды поверхностных водоемов».

Содержание

1. Область применения

2. Санитарно-микробиологические исследования

2.1. Отбор, хранение и транспортирование проб

2.2. Аппаратура, расходные материалы, реактивы, питательные среды

2.3. Подготовка посуды и материалов

2.4. Приготовление питательных сред и реактивов

2.5. Подготовка к анализу

2.6. Методика работы при использовании мембранных фильтров

2.7. Определение общих и термотолерантных колиформных бактерий методом мембранной фильтрации

2.8. Определение общих и термотолерантных колиформных бактерий титрационным методом

2.9. Определение колифагов прямым методом

2.10. Определение патогенных бактерий семейства Enterobacteriaceae рода Salmonella

2.11. Определение кишечных вирусов

3. Санитарно-паразитологические исследования

3.1. Отбор, хранение и транспортирование проб

3.2. Методики санитарно-паразитологического исследования воды поверхностных водоемов

3.3. Флотационный метод исследования воды

3.4. Метод санитарно-паразитологического исследования воды с применением прозрачных аналитических трековых мембран

3.5. Методика санитарно-паразитологического исследования воды на наличие ооцист криптоспоридий

3.6. Идентификация выявленных возбудителей кишечных паразитарных болезней

3.7. Визуальная оценка вероятной жизнеспособности цист патогенных простейших кишечника и яиц гельминтов

4. Библиографические данные

Приложения для микробиологических исследований

Приложение 1 (обязательное) Определение общего числа микроорганизмов, образующих колонии на питательном агаре

Приложение 2 (обязательное) Определение спор сульфитредуцирующих клостридий

Приложение 3 (обязательное) Определение Esherichia coli методом мембранной фильтрации

Приложение 4 (обязательное) Определение Escherichia coli титрационным методом

Приложение 5 (обязательное) Определение энтерококков методом мембранной фильтрации

Приложение 6 (обязательное) Определение энтерококков титрационным методом

Приложение 7 (обязательное) Метод определения числа стафилококков

Приложение 8 (обязательное) Таблицы расчета наиболее вероятного числа микроорганизмов

Приложение 9 (справочное) Схема посева воды из различных объектов при работе методом мембранных фильтров

Приложение 10 (справочное) Схема посева воды из различных объектов при работе титрационным методом

Приложение 11 Цисты патогенные кишечных простейших и яйца гельминтов, определяемые методикой санитарно-паразитологического исследования воды

Приложение 12 Яйца гельминтов, определяемые методикой санитарно-паразитологического исследования воды

Приложение 13 Схема выполнения методики использования прозрачных аналитических трековых мембран

УТВЕРЖДАЮ

Главный государственный санитарный

врач Российской Федерации,

Первый заместитель министра

здравоохранения Российской Федерации

Г.Г. Онищенко

3 марта 2004 г.

Дата введения: с момента утверждения

4.1. Методы контроля. Биологические и микробиологические факторы

Санитарно-микробиологический и санитарно-паразитологический анализ воды поверхностных водных объектов

Методические указания
МУК 4.2.1884-04

1. Область применения

1.1. Настоящие методические указания по методам контроля (далее - МУК) устанавливают методы санитарно-микробиологического и санитарно-паразитологического контроля качества воды поверхностных водных объектов в пунктах питьевого, хозяйственно-бытового и рекреационного водопользования, а также у населенных мест в соответствии с СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод", СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества".

1.2. Методические указания предназначены для органов и учреждений государственной санитарно-эпидемиологической службы, обеспечивающих государственный санитарно-эпидемиологический надзор и контроль за качеством воды поверхностных водоемов, используемых или намечаемых к использованию в качестве источников централизованного водоснабжения, зон рекреации, а также могут быть использованы лабораториями организаций, осуществляющих производственный контроль.

1.3. Санитарно-микробиологический анализ воды подземных источников проводят в соответствии с МУК 4.2.1018-01 "Санитарно-микробиологический анализ питьевой воды".

1.4. Санитарно-микробиологический анализ воды действующих источников в черте населенных мест, зонах рекреации осуществляют по показателям СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод": общие и термотолерантные колиформные бактерии, колифаги, возбудители кишечных инфекций (сальмонеллы, энтеровирусы).

1.5. При выборе нового поверхностного источника централизованного питьевого водоснабжения, а также при решении вопроса о необходимости проведения оздоровительных мероприятий или закрытия зоны рекреации, анализ качества воды проводят по более широкому набору микробиологических показателей в соответствии с действующими документами. Методы определения дополнительных показателей приведены в прилож. 1-10.

2. Санитарно-микробиологические исследования

2.1. Отбор, хранение и транспортирование проб

Отбор проб осуществляют в соответствии с требованиями ГОСТ Р 51592-2000 "Вода. Общие требования к отбору проб" и ГОСТ Р 51593-2000 "Вода питьевая. Отбор проб".

Пробы для санитарно-микробиологического анализа отбирают в стерильные емкости.

Для отбора проб воды используют специально предназначенную для этих целей одноразовую посуду или емкости многократного применения, изготовленные из материалов, не влияющих на жизнедеятельность микроорганизмов.

Емкости должны быть оснащены плотно закрывающимися пробками (силиконовыми, резиновыми или из других материалов) и защитным колпачком (из алюминиевой фольги, плотной бумаги) или завинчивающимися крышками. Многоразовая посуда, в т.ч. пробки, должна выдерживать стерилизацию сухим жаром или автоклавированием.

Стерильные емкости открывают непосредственно перед отбором, удаляя пробку вместе со стерильным колпачком. Во время отбора пробка и края емкости не должны чего-либо касаться. Ополаскивать посуду не следует.

После наполнения емкость закрывают стерильной пробкой, обеспечивающей герметичность и не намокающей при транспортировании (ватные пробки не применять), и стерильным колпачком.

При заполнении емкостей должно оставаться пространство между пробкой и поверхностью воды, чтобы пробка не смачивалась при транспортировании.

Поверхностные пробы отбирают с глубины 10-15 см от поверхности воды или от нижней кромки льда. Придонные пробы отбирают в 30-50 см от дна. Отбор проб следует производить с использованием различных плавсредств, с мостов, помостов и т.п. в местах, где глубина водоемов не менее 0,5 м. Недопустимо производить отбор проб с берега.

Поверхностные пробы отбирают батометром с устройством для закрепления стерильных емкостей. Глубинные пробы отбирают специальным батометром, предназначенным для этих целей. Допускается использовать другие приспособления, установленные в приложении к ГОСТ Р 51592-00.

При отборе одним батометром нескольких проб, его каждый раз стерилизуют фламбированием. Из одной точки в первую очередь отбирают пробы для микробиологических исследований, а затем для других целей. Проруби делают, избегая внесения загрязнения со льда и инструментов. Руки перед отбором проб должны быть обеззаражены.

Для воды, содержащей токсичные металлы (бериллий, ртуть, кадмий, таллий) массовой концентрацией более 0,01 мг/л, в емкости до их стерилизации добавляют 0,3 мл 15%-ного раствора нитрилотриуксусной кислоты на 500 мл пробы.

Отбор проб производит специалист после прохождения инструктажа по технике выполнения отбора проб для микробиологического анализа.

Отобранную пробу маркируют и сопровождают документом отбора проб воды с указанием места, даты, времени забора, фамилии специалиста, отбиравшего пробу, и другой информации (температуры воды, погодных условий).

Объем пробы зависит от того, какие микроорганизмы должны быть определены, например, при анализе воды:

- на индикаторные микроорганизмы - не менее 500 мл;

- на индикаторные и патогенные бактерии (сальмонеллы) - 1,5 л.

Доставку проб воды осуществляют в контейнерах-холодильниках при температуре (4-10) °С. В холодный период года контейнеры снабжают термоизолирующими прокладками, обеспечивающими предохранение проб от промерзания. В лаборатории, если анализ по каким-либо причинам откладывают, пробы следует поместить в холодильник.

При соблюдении указанной температуры транспортирования и хранения срок начала исследований от момента отбора проб не должен превышать 6 ч. Если пробы нельзя охладить, их анализ проводят в течение 2 ч после забора.

Если не может быть соблюдено время доставки пробы и температура хранения, анализ пробы по бактериологическим показателям не проводят.

Метод отбора и концентрирования кишечных вирусов из воды поверхностных водоемов представлен в п. 2.11.

2.2. Аппаратура, расходные материалы, реактивы, питательные среды

2.2.1. Аппаратура

Термостаты для температурного режима (37±1) °С

 

Термостат и водяная баня с автоматическим регулированием температуры (44 ± 0,5) °С

 

Водяная баня для температурного режима (75 ± 5) °С

 

Водяная баня или термостат для температурного режима 45-49 °С (для питательных сред)

 

Прибор для мембранной фильтрации под вакуумом с диаметром фильтрующей поверхности 35 или 47 мм и устройство для создания разрежения 0,5-1,0 атм.

 

Весы лабораторные общего назначения 4 класса точности, с пределом взвешивания до 1000 г, допустимая погрешность не более 0,1 г

ГОСТ 24104-80

Весы лабораторные общего назначения 4 класса точности, с пределом взвешивания до 200 г, допустимая погрешность не более 0,02 г

ГОСТ 24104-80

Весы торсионные с диапазоном измерений от 0 до 500 мг

 

Термометр ртутный с диапазоном измерения от 0 до 50 °С с ценой деления шкалы 0,5 °С

 

Термометр ртутный с диапазоном измерения от 0 до 200 °С с ценой деления шкалы 1 °С

 

Термометр спиртовой с диапазоном измерения от -50 до +50 °С с ценой деления шкалы 1°С

 

РН-метр, обеспечивающий измерение с погрешностью до 0,01

ГОСТ 15150-69

Дистиллятор, обеспечивающий качество дистиллированной воды не ниже

ГОСТ 6709-72

Стерилизатор суховоздушный для температурного режима (180 ± 5) °С

 

Стерилизатор паровой, режим работы от 0 до 2,5 кгс/см3

ГОСТ 17726-81

Холодильники бытовые электрические с температурой в камере 4-6 °С

 

Холодильник глубокого замораживания (-20 °С)*

 

Вытяжной шкаф для работы с хлороформом при исследованиях на колифаги*

 

Нагревательный прибор для варки питательных сред, либо магнитные мешалки с подогревом до 300 °С

 

Прибор для счета колоний бактерий

 

Лупа с двукратным увеличением

 

Дозаторы для разлива жидких питательных сред и растворов

 

Дозаторы пипеточные

 

Облучатель бактерицидный

 

Оптический стандарт мутности на 10 ед.

 

Микроскоп стереоскопический, обеспечивающий увеличение от 3,5х до 119х, с полем зрения 39-1,9 мм

 

Инвертированный микроскоп для просмотра флаконов с культурами клеток при анализе на энтеровирусы*

 

Микроскоп биологический, обеспечивающий увеличение от 84х до 1350х

ГОСТ 8284-78

Батометр с устройством для закрепления стерильных емкостей

 

Батометр специальный для отбора проб с разных глубин

 

Часы сигнальные или песочные

ГОСТ 10576-74

Центрифуга лабораторная рефрижераторная ЦЛР-1МР*

ТУ-42-2145

Шуттель-аппарат*

 

Ламинарный шкаф для культуры клеток (класс не ниже 2)*

 

Микродозаторы переменного объема: на 0,5-10 мкл; 40-200 мкл; 200-1000 мкл

 

Штатив для микродозаторов 5-поз.

 

Наконечники на 200, 1000 мкл

 

Примечание.

1)* Аппаратура, используемая для вирусологического анализа.

2) Для экспресс анализа индикаторных и патогенных микроорганизмов в воде может использоваться микробиологический анализатор "БакТрак 4000" в соответствии с МУК 4.2.1111-02.

2.2.2. Посуда лабораторная стеклянная

Пробирки (многоразового или одноразового использования)

ГОСТ 25336-82

Цилиндры, вместимостью 100, 250, 500 мл или мензурки, вместимостью 250, 500, 1000 мл

ГОСТ 1770-74

Чашки бактериологические (Петри)

ГОСТ 23932-90

Воронки стеклянные

ГОСТ 25336-82

Пипетки, вместимостью 1, 2, 5, 10 мл с ценой деления 0,1 мл (многоразового или одноразового использования)

ГОСТ 29227-91

Стекла предметные

ГОСТ 9284-85

Стекла покровные

ГОСТ 6672-85

Стеклянные бюретки, диаметром 12-13 мм и высотой 35-40 см

 

Флаконы стеклянные или пластиковые (одноразовые) для культивирования культур тканей емкостью: 5, 100, 200, 500 и 1000 мл

 

2.2.3. Расходные материалы

Мембранные фильтры для микробиологических целей с диаметром пор не более 0,45 мкм и размером диска 35 или 47 мм или другие фильтрующие мембраны с аналогичной способностью фильтрации, имеющие сертификат качества

 

Индикаторы бумажные для определения рН в диапазоне 6-8 с интервалом определения 0,2

 

Фольга алюминиевая, колпачки металлические

 

Горелки газовые или спиртовки

 

Петли бактериологические

 

Поплавки бактериологические

 

Пинцеты для работы с мембранными фильтрами

 

Штативы для пробирок

 

Емкости эмалированные

 

Пробки различных размеров: силиконовые, резиновые и другие, выдерживающие стерилизацию сухим жаром или автоклавированием

ГОСТ 12026-76

Вата хлопковая медицинская гигроскопическая

ГОСТ 5556-81

Марля медицинская

ГОСТ 9412-77

Маркеры водостойкие

 

Лейкопластырь

 

Перчатки резиновые

 

Шпагат

 

Бумага плотная для упаковки посуды

 

Штативы комбинированные для пробирок 0,6 и 1,5 мл

 

Пленка Parafilm M

 

Штативы для культивирования клеток культур ткани в пробирках в статическом состоянии

 

Планшеты пластиковые для культивирования культур тканей

 

2.2.4. Химические реактивы

Железо серно-кислое закисное 7-водное

ГОСТ 4148-78

Бромтимоловый синий

ТУ 6-09-20-86-77

Кислота соляная

ГОСТ 3118-77

Натрий серноватисто-кислый (тиосульфат натрия) 5-водный

ГОСТ 27068-86

Натрий хлористый

ГОСТ 4233-77

Натрий гидрат окиси

ГОСТ 4328-77

Спирт этиловый ректификованный медицинский

ГОСТ 5962-67

Спирт этиловый технический

ГОСТ 18300-87

Глюкоза

ГОСТ 6038-79

Лактоза

ГОСТ 6038-74

Натрий сернисто-кислый (сульфит натрия)

ГОСТ 903-76

α-нафтол**

ГОСТ 5838-79

Розоловая кислота

 

Фенилендиаминовые соединения: **

 

N,N,N',N',-тетраметил-п-фенилендиамин гидрохлорид или N,N-диметил-п-фенилендиамин соляно-кислый

ТУ 6-09-1903-77

Фуксин основнойжж**

ТУ 6-09-4119-75

Хлороформ***

ГОСТ 22300

Калий фосфорно-кислый однозамещенный

ГОСТ 4198-75

Калий фосфорно-кислый двузамещенный

ГОСТ 2493-75

Кислота серная

ГОСТ 4204-77

Натрий двууглекислый

ГОСТ 2156-76

Натрий углекислый

ГОСТ 83-79

Натрий фосфорно-кислый двузамещенный безводный

ГОСТ 11773-76

Натрий фосфорно-кислый однозамещенный

ГОСТ 245-76

Фенол

ГОСТ 5417-72

Бриллиантовый зеленый

ТУ 6-09-4278-76

Калий теллуристо-кислый

ТУ 6-09-2060-77

Кислота ортофосфорная

ТУ 6-09-4229-76

Магний хлористый 6-водный

ГОСТ 4209-77

Натрия азид

 

Перекись водорода 33 %

ГОСТ 10929-76

Пара-диметиламинобензальдегид

ТУ 6-09-3272-77

2,-3,-5-трифенилтетразолий хлорид

ТУ 6-09-3838-78

Кальций углекислый

 

Йод кристаллический

 

Калий йодистый

 

Триптофан

 

Амиловый спирт

 

Фуксин кислый

 

Тетратионат калия

 

Кристаллический фиолетовый водорастворимый

 

Трис (Tris (hydroxymethyl) aminomethone) M. в 121, Sigma T 1378*

 

Бифэкстракт (сухой) Sigma B-4888*

 

Макропористое стекло - МПС 1000 ВГХ

 

Нейтральный красный*

 

Примечание.

Все химические реактивы должны соответствовать квалификации не ниже ЧДА.

* Вещества, используемые для вирусологического анализа.

** Вещества обладают канцерогенным и мутагенным действием, работа с ними требует соблюдения мер предосторожности.

*** Вещества, используемые для исследований на колифаги и энтеровирусы.

2.2.5. Питательные среды

Питательная среда для выделения энтеробактерий, сухая (типа Эндо)

 

Агар микробиологический

ГОСТ 17206-84

Агар питательный сухой

ТУ 42-14-33-75

Сухой препарат с индикатором ВР и лактозой или среда Гисса с лактозой

 

Сухой препарат с индикатором ВР и глюкозой или среда Гисса с глюкозой

 

Сухой питательный бульон

 

Пептон сухой ферментативный для бактериологических целей

ГОСТ 13805-76

Системы индикаторные бумажные (СИБ)

 

- СИБ-лактоза

 

- СИБ-оксидаза

 

- СИБ-глюкоза

 

Питательная среда для накопления сальмонелл, сухая (селенитовый бульон)

 

Питательная среда для выделения энтерококков, сухая

 

Питательная среда для выделения стафилококков, сухая

 

Агар с эозин-метиленовым синим, сухой (среда Левина)

 

Висмут-сульфит агар

 

SS-arap

 

Питательная среда для первичной идентификации энтеробактерий (агар Клиглера)

 

Сыворотки агглютинирующие адсорбированные сальмонеллезные О и Н (сухие)

 

Сыворотки агглютинирующие адсорбированные поливалентные к сальмонеллам

 

Яйца куриные диетические

 

Молоко обезжиренное

 

Антибиотики: бензилпенициллин натриевая соль, сульфат стрептомицина*

 

Раствор Эрла 10-кратный 5860-68*

 

Раствор Версена*

 

Раствор Хенкса, рН 7,2*

 

Среда Игла-МЭМ с двойным набором аминокислот*

 

Сыворотка эмбриональная*

 

Раствор трипсина 0,25%*

 

Перевиваемые линии клеток RD, BGM, Нер-2*

 

Набор диагностических сывороток для типирования вирусов*

 

Примечание.

* Реактивы и питательные среды для вирусологического анализа.

Допускаются к использованию оборудование, расходные материалы, реактивы, питательные среды, диагностические препараты и системы идентификации с аналогичными характеристиками, разрешенные к применению для этих целей в установленном порядке.

Питательные среды и биологические препараты зарубежного производства должны иметь международный сертификат качества ISO 9000 или EN 29000.

При использовании следует руководствоваться рекомендациями фирмы-производителя.

Все обезвоженные питательные среды должны иметь сертификат соответствия.

2.2.6. Тест-культуры микроорганизмов

Контрольный колифаг MS-2 штамм ВКПМ РН 1505, штамм ВКПМ-3254 Е. coli К12 F+ Str-r, штамм Escherichia coli 675, Staphylococcus aureus 906 и один из штаммов: Pseudomonas aeruginosa 10145 АТСС или Pseudomonas fluorescens 948 АТСС.

Штаммы получают во Всероссийской Коллекции Промышленных Микроорганизмов (Государственном НИИ генетики) и (или) в Национальном органе контроля (Государственном НИИ стандартизации и контроля медицинских и биологических препаратов им. Л.А. Тарасевича).

Примечание. В производственных лабораториях, расположенных на территории водопроводных станций, следует использовать штамм Pseudomonas fluorescens (температура инкубации культуры 25-28°С).

2.2.7. Внутренний контроль качества микробиологических исследований

Комплекс выполняемых лабораторией мероприятий и процедур, направленных на обеспечение и контроль стабильности требуемых условий роста микроорганизмов, ведения эталонных бактериальных культур, а также предупреждения неблагоприятного воздействия факторов, возникающих в процессе выполнения анализа и оценки его результатов, изложены в МУ 2.1.4.1057-01 "Организация внутреннего контроля качества санитарно-микробиологического исследования воды".

2.3. Подготовка посуды и материалов

Вся посуда, применяемая для микробиологического анализа, должна быть стерильной.

Правила подготовки посуды и материалов - в соответствии с МУК 4.2.1018-01 "Санитарно-микробиологический анализ питьевой воды".

Срок хранения стерильной посуды не более 30 дней.

Лабораторная посуда для вирусологических исследований должна быть химически чистой, а именно, хорошо обезжирена, тщательно вымыта до полного удаления моющих средств и других посторонних примесей, высушена и простерилизована.

Новая стеклянная посуда должна выдерживаться в течение 2 ч в 15-20 %-ном растворе серной кислоты (применяется только химически чистая серная кислота) или в течение 10-12 ч в 4 %-ном растворе соляной кислоты. Работу необходимо проводить с соблюдением правил техники безопасности - в защитных очках, резиновом фартуке и резиновых перчатках. После обработки кислотой посуду тщательно промывают струей горячей воды (не менее 10 раз) и троекратно - дистиллированной водой, высушивают, монтируют в металлические контейнеры или в бумагу.

Посуду для микробиологического анализа стерилизуют в сухожаровом шкафу в течение 2 ч при 180 °С.

Контроль стерильности посуды проводят в соответствии с МУ 2.1.4.1057-01 "Организация внутреннего контроля качества санитарно-микробиологических исследований воды".

2.4. Приготовление питательных сред и реактивов

2.4.1. Общие требования

При выполнении микробиологического анализа следует отдавать предпочтение стандартизованным сухим питательным средам промышленного производства. При использовании промышленных сухих питательных сред их приготавливают в соответствии с указаниями изготовителя на этикетке. В этом случае следует соблюдать способ применения и срок хранения питательных сред, указанных на упаковках.

Общие требования к питательным средам даны в ГОСТ Р 51456-00.

Вновь приобретенная партия питательных сред должна пройти внутренний контроль качества в соответствии с МУ 2.1.4.1057-01 "Организация внутреннего контроля качества санитарно-микробиологических исследований воды".

По этому же документу выполняют контроль питательных сред на этапе приготовления, контроль условий и сроков хранения готовых питательных сред, контроль их биологических свойств, характеристик роста бактерий и т.п.

Питательные среды, разлитые в чашки и хранящиеся в холодильнике, перед посевом должны быть прогреты до комнатной температуры.

При наличии следов влаги на поверхности агаризованных сред проводят подсушивание в термостате, приоткрывая крышку, до исчезновения конденсата.

2.4.2. Растворы для разбавлений

2.4.2.1. Солевой (физиологический) раствор

В 1 л дистиллированной воды растворяют 8,5 г хлорида натрия, устанавливают рН с расчетом, чтобы после стерилизации рН = 7,0 ± 0,1. Разливают во флаконы, стерилизуют при температуре (120 ± 2) °С 20 мин. Разливают мерно непосредственно перед посевом.

Срок хранения - до 1 месяца при комнатной температуре.

2.4.2.2. Пептонный раствор

В 1 л дистиллированной воды растворяют при кипячении 1 г пептона. Устанавливают рН с расчетом, чтобы после стерилизации рН = 7,0 ± 0,1. Разливают во флаконы. Стерилизуют при температуре (120 ± 2) °С 20 мин. Разливают мерно непосредственно перед посевом.

Срок хранения - до 1 месяца при комнатной температуре.

2.4.2.3. Пептонный солевой раствор

В 1 л дистиллированной воды растворяют при кипячении 8,5 г хлорида натрия и 1 г пептона. Устанавливают рН с расчетом, чтобы после стерилизации рН = 7,0 ± 0,1. Стерилизуют при температуре (120 ± 2) °С 20 мин. Разливают мерно непосредственно перед посевом.

Срок хранения - до 1 месяца при комнатной температуре.

2.4.3. Питательный бульон

Готовят из сухого препарата промышленного производства по способу, указанному на этикетке.

Питательный бульон (десятикратный) для колифагов готовят путем увеличения в 10 раз навески сухого препарата, указанной на этикетке.

2.4.4. Питательный агар

Готовят из сухого препарата промышленного производства по способу, указанному на этикетке.

Питательный агар не допускается выдерживать в расплавленном состоянии более 8 ч. Оставшийся неиспользованным агар повторному расплавлению не подлежит.

Питательный агар для определения колифагов прямым методом при посеве 20 мл пробы на чашку Петри готовят, увеличивая навеску сухого препарата в 2 раза от прописи. Разливают в емкости, автоклавируют при температуре (120 ± 2) °С 20 мин.

Полужидкий питательный агар готовят с использованием одной трети навески сухого препарата, указанной на этикетке. Разливают в пробирки и автоклавируют при температуре (120 ± 2) °С 20 мин.

Питательный агар со стрептомицином готовят из расчета содержания 100 мкг стрептомицина на 1 мл питательного агара, приготовленного по стандартной прописи. Стерильно на стерильной дистиллированной воде готовят раствор стрептомицина в концентрации 10 мг на 1 мл. В готовый питательный агар, отмеренный по объему и остуженный до температуры 45-49 °С, вносят приготовленный стерильный раствор стрептомицина из расчета 0,1 мл на 10 мл питательного агара. Разливают в пробирки для приготовления скошенного агара. Срок хранения питательного агара со стрептомицином не более 2 недель. Повторное расплавление питательной среды со стрептомицином запрещается.

2.4.5. Фуксин-сульфитная среда Эндо

Готовят из сухого препарата по способу, указанному на этикетке.

Готовую среду охлаждают до 60-70 °С и разливают в чашки Петри.

Если после застывания на поверхности среды заметны следы влаги, чашки перед посевом необходимо подсушить. Срок хранения чашек со средой не более 3-5 суток в темноте, если производителем не оговорены другие сроки.

Примечание. В соответствии со стандартом ИСО 9308-1-00 для определения колиформных бактерий методом мембранной фильтрации может использоваться лактозный ТТХ-тергитол-агар.

2.4.6. Лактозопептонная среда

Растворяют при нагревании в 1 л дистиллированной воды 10 г пептона, 5 г натрия хлористого, 5 г лактозы. После растворения ингредиентов добавляют индикатор (2 мл 1,6 %-ного спиртового раствора бромтимолового синего), устанавливают рН (7,4-7,6), разливают по 10 мл в пробирки. Для приготовления концентрированной лактозопептонной среды все ингредиенты, кроме воды, увеличивают в 10 раз, разливают по 1 мл в пробирки и по 10 мл во флаконы.

Готовую среду стерилизуют при (112 ± 2) °С 12 мин.

2.4.7. Питательные среды для подтверждения способности ферментировать лактозу до кислоты и газа

2.4.7.1. Полужидкая среда с лактозой из сухого препарата

Готовят по способу, указанному на этикетке.

Срок хранения не более 2 недель при комнатной температуре. В холодильнике не хранить.

Посев производят уколом до дна пробирки. При образовании кислоты цвет питательной среды изменяется в соответствии с использованным индикатором. При газообразовании газ скапливается или по уколу, или на поверхности, или в толще среды появляются разрывы. При инкубации посевов более 5 ч газ может улетучиться. В таких случаях на присутствие газа указывают оставшиеся в толще среды "карманы" - потемнения среды на месте бывшего пузырька газа.

2.4.7.2. Жидкая лактозопептонная среда

Готовят в соответствии с п. 2.4.6 с добавлением 1 мл 1,6 %-ного спиртового раствора бромтимолового синего на 1 л среды, разливают по 3-5 мл в пробирки с поплавком или комочком ваты.

2.4.7.3. СИБ-лактоза

Готовят по прописи завода-изготовителя.

Примечание. При выборе среды для подтверждения ферментации углеводов целесообразно использовать полужидкие среды, которые позволяют улавливать небольшое количество газа и на ранних стадиях ферментации, что повышает чувствительность метода и скорость получения ответа через 4-6 ч.

2.4.8. Приготовление лактозного бульона с борной кислотой

Растворяют в 1 л дистиллированной воды 10 г пептона, 12,2 г калия фосфорно-кислого двузамещенного (безводного), 4,1 калия фосфорно-кислого однозамещенного (безводного), 3,2 г борной кислоты, 5 г лактозы, разливают по 5 мл в пробирки с поплавками или комочками ваты, стерилизуют при (112 ± 2) °С 12 мин. Срок хранения не более 2 недель.

Примечание. Каждую новую партию борной кислоты следует испытывать: при выращивании Е. coli при температуре 44°С среда дает положительную реакцию - помутнение и газ.

2.4.9. Реактивы для оксидазного теста

Вариант 1.

Раствор 1%-ный водный тетраметил-п-фенилендиамина гидрохлорида. Готовят перед употреблением.

Вариант 2.

Реактив N 1. Раствор 1 %-ный спиртовой α-нафтола.

Реактив N 2. Раствор 1 %-ный водный диметил-п-фенилендиамина дигидрохлорида.

Растворы сохраняют в темных флаконах с притертыми пробками: 1-й - до одного месяца, 2-й - до одной недели. Перед употреблением к трем частям первого раствора добавляют семь частей второго раствора.

Могут быть использованы коммерческие тест-системы для постановки оксидазного теста (СИБ-оксидаза или аналоги). Каждую новую партию и периодически раз в месяц реактивы или тест-системы на оксидазу следует испытывать с тест-культурами микроорганизмов, дающих положительную (Ps. aeruginosa, Ps. fluorescens) и отрицательную (Е. coli) оксидазную реакцию.

2.4.10. Железосульфитный агар

В 1000 мл стерильного расплавленного питательного агара (по п. 2.4.4) добавляют 10 г глюкозы, нагревают до растворения, разливают мерно во флаконы, автоклавируют при (112 ± 2) °С 12 мин (основная среда).

Непосредственно перед употреблением готовят 20 %-ный раствор сульфита натрия (Na2SO3) и 8%-ный раствор железа серно-кислого закисного (FeSO4) или железа хлористого (FeCl2) в стерильной посуде на стерильной дистиллированной воде. Раствор сульфита натрия нагревают до полного растворения. Перед выполнением анализа в 100 мл расплавленной основной среды вносят 5 мл 20 %-ного раствора сульфита натрия, перемешивают, затем вносят 1 мл 8 %-ного раствора серно-кислого железа, перемешивают и стерильно разливают во флаконы.

2.4.11. Щелочно-полимиксиновая среда (ЩЕС)

Ингредиенты

Обычная концентрация

Удвоенная концентрация

1. Мясопептонный бульон

70,0 мл

70,0 мл

Натрий хлористый

0,5 г

1,0 г

Глюкоза

1,0 г

2,0 г

Дрожжевой экстракт

2,0 мл (или 2 г)

4,0 мл (или 4 г)

2. Вода дистиллированная

15,0 мл

15,0 мл

Натрий углекислый

0,53 г

1,1 г

3. Вода дистиллированная

10,0 мл

10,0 мл

Натрий двууглекислый

0,25 г

0,5 г

Растворы 1, 2 и 3 стерилизуют раздельно при 112 °С 12 мин. После стерилизации растворы смешивают, проверяют рН (10,0-10,2), прибавляют 20000 единиц полимиксина М, 0,5 мл 1,6 %-ного спиртового раствора бромтимолового синего, разливают в пробирки по 5 мл. В среду удвоенной концентрации добавляют 40000 единиц полимиксина М и 1 мл бромтимолового синего. Разливают в колбы или флаконы по 10, 50 и 100 мл соответственно количеству исследуемой воды.

2.4.12. Приготовление молочно-ингибиторной среды

Хорошо смешивают и разливают в чашки Петри 85 мл готового питательного агара, 15 мл стерильного обезжиренного (0,5 % жирности) молока, 1,25 мл 0,01 %-ного водного раствора кристаллического фиолетового, 1 мл 2 %-ного водного раствора теллурита калия.

2.4.13. Приготовление дрожжевого экстракта

Распределяют равномерно 1000 г прессованных (пекарских) дрожжей в 2000 мл дистиллированной воды, прогревают в автоклаве при 100 °С 30 мин, отстаивают в холодильнике 4-5 суток. Надосадочную жидкость разливают во флаконы по 50-100 мл, прибавляют на каждые 100 мл экстракта 1,25 мл 0,01 %-ного водного раствора кристаллического фиолетового, вновь прогревают при 100 °С 30 мин. Хранят экстракт в холодильнике. Экстракт можно готовить по этой же методике из 1000 г сухих дрожжей на 6000 мл дистиллированной воды. Можно применять сухой дрожжевой экстракт промышленного производства, уменьшив концентрацию в 10 раз от указанного в прописи п. 2.4.11.

2.4.14. Азидная среда Сланеца-Бертли

Сухой питательный агар промышленного производства по указанию на этикетке, 4 г калия фосфорно-кислого однозамещенного расплавляют при нагревании в 1000 мл дистиллированной воды, устанавливают рН 7,0, разливают мерно в емкости, стерилизуют при (120 ± 2) °С 20 мин.

Перед употреблением в расплавленный и слегка остуженный агар добавляют из расчета на 100 мл среды: дрожжевого экстракта - 2,0 мл, глюкозы - 1,0 г, азида натрия - 0,04 г, 1 %-ного водного раствора 2,-3,-5-трифенилтетразолий хлорида (ТТХ) - 1 мл. Тщательно смешивают, разливают в чашки по 20-25 мл. Хранят в холодильнике не более 2 недель. Среду можно готовить перед употреблением без стерилизации в автоклаве.

Допускается использовать сухой препарат промышленного производства - энтерококкагар.

2.4.15. Солевой агар с ТТХ

Сухой питательный агар по прописи на этикетке, хлорид натрия 65 г расплавляют при нагревании в 1000 мл дистиллированной воды. Осадок отфильтровывают, разливают мерно во флаконы, стерилизуют при (120 ± 2) °С 20 мин. Перед употреблением в расплавленную основу из расчета на 100 мл добавляют: 1 г глюкозы, 2 мл дрожжевого экстракта или другого дрожжевого препарата, 1 мл водного 1%-ного раствора ТТХ. Тщательно смешивают, разливают в чашки.

2.4.16. Желточно-солевой агар (ЖСА)

Сухой питательный агар по указанию на этикетке и 65 г хлорида натрия растворяют при нагревании в 1000 мл дистиллированной воды, разливают мерно в емкости, стерилизуют при (120 ± 2) °С 20 мин. Перед употреблением в расплавленный и остуженный до 50-55 °С солевой агар прибавляют один стерильно приготовленный яичный желток, тщательно смешанный с 50 мл физиологического раствора с помощью стеклянных бус, перемешивают и разливают в чашки Петри тонким слоем по 12 - 15 мл.

Допускается использовать сухой препарат промышленного производства (стафилококкагар).

2.4.17. Среда Мюллера-Кауфмана

В 500 мл исследуемой воды вносят 25 мл 10 %-ного пептона, 0,5 г желчных солей, 5 г кальция углекислого, 15 г натрия тиосульфата, 0,5 мл 0,1 %-ного водного раствора бриллиантового зеленого, 10 мл раствора Люголя. Для приготовления раствора Люголя в 10 мл воды вносят 3 г йода кристаллического и 2,5 г калия йодистого.

2.4.18. Приготовление желчной соли по Олькеницкому

К 1000 мл желчи крупного рогатого скота прибавляют 40 г натрия гидрата окиси, гидролизуют в автоклаве при 120 °С 3 ч или 2 раза по 2 ч в посуде, исключая алюминиевую. После охлаждения в гидролизат прибавляют 100 мл 20 %-ного водного раствора бария хлористого и прогревают в автоклаве при 100 °С 1 ч. Через 18-24 ч отстаивания сливают жидкость с осадка и фильтруют. К профильтрованному гидролизату прибавляют при постоянном помешивании 20 %-ный раствор соляной кислоты до кислой реакции (рН 6,4-6,6) и оставляют на 18-24 ч. Надосадочную жидкость сливают, осадок промывают водой, прибавляют при нагревании 40 %-ный раствор натрия гидрата окиси до слабо щелочной реакции (рН 7,2-7,4) и выливают на противень для подсушивания в сушильном шкафу при 115 °С до порошкообразного состояния. Из 1 000 мл желчи можно получить 36 г смеси желчных солей. Следует остерегаться перещелачивания при последней операции. Хранят соли в темной банке с притертой пробкой.

2.4.19. Селенитовая среда Лейфсона

Готовят из сухого препарата промышленного производства по указанию на этикетке.

Для приготовления селенитового бульона двойной концентрации увеличивают навеску сухого препарата в два раза на тот же объем дистиллированной воды.

2.4.20. Магниевая среда

Приготовление 100 мл среды обычной и двойной концентрации.

Готовят раздельно растворы А, Б, В по нижеследующей прописи:

Растворы

Ингредиенты

Обычная концентрация

Удвоенная концентрация

А

Пептон ферментативный

0,42 г

0,84 г

 

Натрий хлористый

0,7 г

1,4 г

 

Калий фосфорно-кислый однозамещенный

0,15 г

0,3 г

 

Дрожжевой экстракт

2,0 мл

4,0 мл

 

Вода дистиллированная

89,0 мл

89,0 мл

Б

Магний хлористый кристаллический

3,6 г

7,2 г

 

Вода дистиллированная

9,0 мл

9,0 мл

В

Бриллиантовый зеленый 0,1 %-ный водный раствор

0,5 мл

1,0 мл

Ингредиенты растворяют, кипятят в течение 10 мин, затем растворы А, Б и В сливают в одну колбу.

Для посева больших объемов воды можно предварительно готовить навески и растворы ингредиентов среды в расфасованном виде, которые затем вносят в исследуемую воду в соответствии с нижеследующей прописью:

Ингредиенты

Объем пробы воды

500 мл

100 мл

Магний хлористый кристаллический

19,5 г

3,9 г

Натрий хлористый

4,0 г

0,8 г

Калий фосфорно-кислый однозамещенный безводный

0,8 г

0,16 г

10 %-ный раствор пептона

25,0 мл

5,0 мл

Дрожжевой экстракт

11,0 мл

2,5 мл

Бриллиантовый зеленый 0,1 %-ный водный раствор

2,5 мл

0,5 мл

Все навески можно соединить в одной емкости в виде жидкой кашицы. Уже через 24 ч хранения при комнатной температуре происходит стерилизация концентрата. Дополнительная стерилизация не требуется.

2.4.21. Тетратианатная среда накопления по Preuss

К 1000 мл мясопептонного бульона добавляют 5 мл 0,1 %-ного водного раствора кристаллического фиолетового, стерилизуют при (112 ± 2) °С 12 мин. После охлаждения добавляют 20 г тетратианата калия, устанавливают рН 6,5. Среду разливают в стерильные емкости, необходимого для последующего посева размера. Срок хранения - до одной недели при температуре 4 °С.

2.4.22. Висмут-сульфит агар

Готовят из сухого препарата промышленного производства по указанию на этикетке.

2.4.23. Приготовление SS-агара

Готовят из сухого препарата промышленного производства по указанию на этикетке.

2.4.24. Приготовление индикаторных бумажек для определения продукции индола

Растворяют 4 г пара-диметиламинобензальдегида в 50 мл этилового спирта 96°, добавляют 10 мл орто-фосфорной кислоты (очищенной, концентрированной). Реактивом смачивают полоски из фильтровальной бумаги на 1/3 их длины. Смоченный конец - лимонно-желтый. Высушенные индикаторные бумажки можно сохранять в темноте длительное время. Чувствительность бумажек возрастает при замене этилового спирта на амиловый или изоамиловый.

2.4.25. Среда с триптофаном

Растворяют 10 г ферментативного пептона, 5 г натрия хлористого, 1 г триптофана в 1000 мл дистиллированной воды, устанавливают рН 7,2, разливают в стерильные пробирки по 5-6 мл и автоклавируют при (120 ± 2) °С 20 мин.

2.4.26. Реактив Ковача

Растворяют 5 г пара-диметиламинобензальдегида в 75 мл амилового спирта на водяной бане при 60 °С. Затем медленно добавляют 25 мл концентрированной соляной кислоты. Приблизительно через 6 ч, после изменения цвета, реактив готов для употребления. Цвет готового реактива должен быть от светло-желтого до светло-коричневого. При использовании некачественного амилового спирта реактив может приобрести темный цвет. Реактив следует хранить при температуре 4 °С в темном месте во флаконе из коричневого стекла. Срок хранения - две недели.

2.5. Подготовка к анализу

2.5.1. Подготовка проб воды

Перед посевом пробу тщательно перемешивают и фламбируют горящим тампоном край емкости. Используемые пробирки и чашки маркируют.

Перед каждым отбором новой порции воды для анализа пробу перемешивают продуванием воздуха стерильной пипеткой.

2.5.2. Приготовление разбавлений

Для посева объемов воды, меньших, чем 1 мл, используют разбавления анализируемой воды. Перед посевом растворы для разбавления (п. 2.4.2) разливают по 9 мл в пробирки с соблюдением правил стерильности. Затем в первую пробирку с 9 мл раствора вносят 1 мл анализируемой воды. При этом пипетка не должна быть опущена ниже поверхности воды, чтобы избежать смывания бактерий с наружной стороны. Другой стерильной пипеткой продуванием воздуха тщательно перемешивают содержимое пробирки, отбирают из нее 1 мл и переносят в чашку Петри, что будет соответствовать посеву 0,1 мл анализируемой воды. При необходимости посева меньших объемов, этой же пипеткой переносят 1 мл содержимого первой пробирки в следующую пробирку с 9 мл раствора для разбавления. Другой стерильной пипеткой делают посев 1 мл из второй пробирки, что будет соответствовать посеву 0,01 мл анализируемой воды. В случаях высокого уровня загрязнения воды разбавление продолжают аналогично, каждый раз меняя пипетку.

Время от момента приготовления разбавлений и заливки питательным агаром не должно превышать 30 мин.

2.6. Методика работы при использовании мембранных фильтров

Подготовка мембранных фильтров, фильтровального аппарата, выполнение фильтрования воды - в соответствии с МУК 4.2.1018-01 "Санитарно-микробиологический анализ питьевой воды".

2.7. Определение общих и термотолерантных колиформных бактерий методом мембранной фильтрации

2.7.1. Определение понятия показателей

Общие колиформные бактерии (ОКБ) - грамотрицательные, оксидазоотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты и газа при температуре (37 ± 1) °С в течение 24-48 ч.

Термотолерантные колиформные бактерии (ТКБ) входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты и газа при температуре (44 ± 0,5) °С в течение 24 ч.

2.7.2. Значение показателей и область применения

ОКБ - основной нормируемый показатель при оценке качества воды водоемов в местах водозаборов для централизованного водоснабжения, рекреации, в черте населенных пунктов. ОКБ - интегральный показатель степени фекального загрязнения, который включает ТКБ, Е. coli, и поэтому обладает индикаторной надежностью в отношении возбудителей бактериальных кишечных инфекций. ОКБ - наиболее чувствительный показатель при выявлении источников фекального загрязнения, в т. ч. небольших.

ТКБ рекомендуется определять одновременно в одном и том же посеве с ОКБ для подтверждения фекального происхождения загрязнения. Уровни ОКБ и ТКБ в воде водоемов, загрязняемых сточными водами, близки, различия находятся в пределах ошибки метода. По мере удаления от источника загрязнения и воздействия факторов самоочищения различия в численности этих групп индикаторов возрастают.

При высоком антропогенном, в частности, химическом загрязнении водоемов, сбросах недостаточно обеззараженных сточных вод, нарушении естественного статуса водоема (зарегулированные водоемы, каналы и т.п.) возможно снижение индикаторного значения лактозоположительных ОКБ и ТКБ в результате их более интенсивного отмирания, чем патогенных (сальмонеллы) и условно-патогенных бактерий семейства Enterobacteriaceae. Если при этом центром Госсанэпиднадзора установлено несоответствие данных анализа по ОКБ и ТКБ (менее 1000 и 100 КОЕ соответственно) и неблагоприятной санитарно-гигиенической обстановки (нарушение режима в зонах санитарной охраны водопроводов, сброс сточных вод, урбанизации территорий водосбросов и т.п.), следует обратить внимание на рост лактозоотрицательных колоний, определить их принадлежность к бактериям семейства Enterobacteriaceae (по отрицательному оксидазному тесту и ферментации глюкозы до кислоты и газа) и включить их в число ОКБ при выдаче результата.

2.7.3. Выполнение анализа

2.7.3.1. Определение общих колиформных бактерий

Объем воды для посева выбирают в зависимости от степени ее предполагаемого загрязнения с таким расчетом, чтобы не менее чем на 2 фильтрах выросли изолированные колонии. При этом можно ориентироваться на результаты предыдущих исследований и на рекомендации прилож. 9.

При исследовании воды неизвестной степени бактериального загрязнения следует засевать не менее 4 десятикратных ее объемов.

Отмеренный объем воды фильтруют через мембранные фильтры с соблюдением требований, изложенных в п. 2.6.

Фильтр переносят не переворачивая на среду Эндо, приготовленную по п. 2.4.5, и добиваются полного прилегания его к среде без пузырьков воздуха. Чашки с посевами помещают в термостат дном вверх и инкубируют при температуре (37 ± 1)°С в течение 18-24 ч.

Для учета выбирают фильтры, на которых выросли изолированные типичные для лактозоположительных бактерий колонии: темно-красные, красные, с металлическим блеском и без него, слизистые с темно-малиновым центром с отпечатком на обратной стороне фильтра. Для повышения точности анализа учет ведут не менее чем на двух фильтрах с числом типичных для колиформных бактерий колоний не менее 10 и не более 30 для фильтров с диаметром диска 35 мм и не менее 15 и не более 50 для фильтров с диаметром диска 47 мм. Допустимо вести учет по 1 фильтру или на фильтрах с более густым ростом, но с обязательной оговоркой в приложении к протоколу анализа.

Выполняют оксидазный тест одним из методов.

1. Мембранный фильтр с выросшими на нем колониями переносят на кружок фильтровальной бумаги несколько большего диаметра, чем фильтр, обильно смоченный реактивом для определения оксидазной активности (п. 2.4.9, вар. 1 или 2) или на диск СИБ-оксидаза, смоченный дистиллированной водой. При появлении первых признаков положительной реакции, но не более чем через 5 мин, мембранный фильтр переносят обратно на среду Эндо. После четкого проявления реакции определяют результат. При появлении фиолетово-коричневого или синего окрашивания колоний (в зависимости от примененного реактива) оксидазный тест считают положительным.

2. Полоску фильтровальной бумаги помещают в чистую чашку Петри и смачивают 2-3 каплями реактива для оксидазного теста. Бумажные системы промышленного производства смачивают дистиллированной водой. Подсчитывают типичные колонии каждого типа и по 3-4 - изолированные колонии, из них платиновой петлей или стеклянной палочкой (металлическая петля из нихрома дает ложноположительную реакцию при работе с реактивом - тетраметил-п-фенилендиамином) наносят штрихом на подготовленную фильтровальную бумагу. Реакция считается положительной, если в течение 1 мин появляется сине-фиолетовое окрашивание штриха. При отрицательной реакции цвет в месте нанесения культуры не меняется.

Примечание.

Методом 2 следует проводить определение оксидазной активности при росте на фильтрах изолированных колоний или при получении чистых культур после рассева на среде Эндо, поскольку при наложении или соприкосновении колоний колиформных бактерий с оксидазоположительными колониями посторонних бактерий можно получить ложноположительную реакцию и неоправданно отбросить из учета колонии бактерий, являющихся индикаторами фекального загрязнения.

Метод 2 дает ошибку определения при нерепрезентативной выборке колоний для исследования, в отличие от метода 1, с помощью которого выявляется оксидазная активность одновременно всех выросших колоний.

Все оксидазоположительные колонии из учета исключают. Среди колоний, не изменивших первоначального цвета (оксидазоотрицательных), подсчитывают число типичных лактозоположительных колоний (с отпечатками на обратной стороне фильтра до выполнения оксидазного теста).

При лабораторно-производственном контроле за эксплуатируемыми объектами анализ может быть завершен подсчетом таких колоний, которые отнесены к ОКБ по двум признакам: отрицательному оксидазному тесту и ферментации лактозы на лактозной среде Эндо до кислоты.

Дальнейшее подтверждение ОКБ по способности образовывать газ на лактозных средах проводят в следующих случаях:

- при отсутствии достаточно четкой дифференциации лактозоположительных колоний;

- при росте мелкоточечных или мелких плоских колоний, не характерных для колиформных бактерий;

- при небольшом опыте работы выполняющего анализ.

В этих случаях по 2-3 колонии каждого подсчитанного типа оксидазоотрицательных колоний сразу же после постановки оксидазного теста пересевают в одну из подтверждающих сред с лактозой (п. 2.4.7).

Посевы инкубируют при температуре (37 ± 1) °С в течение 48 ч. Первичный учет на подтверждающих полужидких средах и СИБ возможен через 4-6 ч. При обнаружении кислоты и газа дают положительный ответ. При отсутствии кислоты и газа или при наличии только кислоты пробирки с посевами оставляют для следующего просмотра через 24 ч, а при отрицательном результате для окончательного учета через 48 ч.

2.7.3.2. Определение термотолерантных колиформных бактерий

После постановки оксидазного теста с тех же фильтров с изолированными колониями, которые были выбраны для учета ОКБ, выполняют посев типичных оксидазоотрицательных колоний на одну из подтверждающих сред с лактозой (п. 2.4.7). При числе колоний менее 15 они исследуются все, а более 15 - подсчитывают колонии разных типов и исследуют по 4-5 колоний каждого из них. Среда перед посевом должна быть прогрета до температуры 44 °С. Посевы сразу же переносят в термостат и инкубируют при температуре (44 ± 0,5) °С в течение (24 ± 1) ч. При использовании полужидких сред и СИБ первичный учет можно проводить через 4-6 ч. При обнаружении кислоты и газа дают положительный ответ. При иных реакциях посевы оставляют в термостате для окончательного учета через 24 ч.

2.7.4. Учет результатов

Типичные колонии учитывают как ОКБ при отрицательном оксидазном тесте и образовании кислоты на лактозной среде Эндо. Среди этих колоний учитывают как ТКБ при подтверждении ферментации лактозы с образованием кислоты и газа при температуре 44 °С.

Если при выборочной проверке колоний одного типа получены неодинаковые результаты, то вычисляют числа ОКБ, ТКБ среди этого типа по формуле:

, где

X - число подтвержденных бактерий одного типа;

а - общее число колоний этого типа;

b - число проверенных из них;

с - число колоний с положительным результатом.

Подсчитывают число подтвержденных колоний ОКБ, ТКБ каждой группы отдельно. Подсчет ведут только на тех фильтрах, где количество изолированных колоний колиформных бактерий не более 30-50. Результат подсчета на каждом фильтре суммируют и по формуле определяют число КОЕ в 100 мл.

, где

X - число КОЕ ОКБ или ТКБ в 100 мл;

а - число подтвержденных колоний в сумме;

V - объем воды, профильтрованный через фильтры, на которых велся учет.

Окончательный результат в протоколе анализа выдают: число КОЕ ОКБ в 100 мл, из них число КОЕ ТКБ в 100 мл.

В случаях сплошного роста на всех фильтрах и невозможности учета результатов анализа в протоколе отмечают "зарост фильтров" и анализ повторяют.

При отсутствии на фильтрах колоний колиформных бактерий число КОЕ будет меньше той величины, которая была бы определена в случае обнаружения в анализируемом объеме одной клетки ОКБ, ТКБ. При повторном анализе объем исследуемой воды увеличивают. В чистых водоемах фильтруют 100 мл.

2.8. Определение общих и термотолерантных колиформных бактерий титрационным методом

2.8.1. Определение понятия показателя и его значение по п.п. 2.7.1 и 2.7.2

2.8.2. Область применения

Титрационный метод может быть использован:

- при отсутствии материалов и оборудования, необходимых для выполнения анализа методом мембранной фильтрации;

- при анализе воды с большим содержанием взвешенных веществ;

- в случае преобладания в воде посторонней микрофлоры, препятствующей получению на фильтрах изолированных колоний общих колиформных бактерий.

2.8.3. Выполнение анализа

Объем воды для посева выбирают с таким расчетом, чтобы в минимальных объемах или в наибольшем разбавлении получить один или несколько отрицательных результатов. При этом следует ориентироваться на результаты предыдущих исследований воды в этом же месте водоема и на рекомендации прилож. 10, а также таблиц расчета НВЧ (прилож. 8).

Выбирают схему посева в 2 или 3 параллельных рядах, учитывая при этом, что чем больше повторностей, тем выше точность получаемых результатов.

Каждый объем воды или ее разбавления засевают в лактозопептонную среду, приготовленную в соответствии с п. 2.4.6. Посев 10 мл анализируемой воды вносят в пробирки с 1 мл концентрированной лактозопептонной среды, 1 мл пробы воды и 1 мл из разбавлений вносят в пробирки с 10 мл среды нормальной концентрации.

Посевы инкубируют при температуре (37 ± 1) °С в течение 24 ч.

Полное отсутствие изменения среды позволяет дать отрицательный ответ.

Из посевов в среду накопления, где отмечено помутнение, образование кислоты и газа или только помутнение, производят высев петлей на сектора среды Эндо с таким расчетом, чтобы получить изолированные колонии. Посевы на среде Эндо инкубируют при температуре (37 ± 1) °С в течение 16-18 ч.

2.8.3.1. Определение общих колиформных бактерий

При наличии в среде накопления помутнения и газообразования, а при высеве на подтверждающую среду типичных для лактозоположительных колоний (темно-красных с металлическим блеском или без него), выполняют оксидазный тест в соответствии с п. 2.7.3.1 методом 2 или путем нанесения капель реактива на часть сектора. При обнаружении оксидазоотрицательных колоний дают положительный ответ на наличие ОКБ в данном объеме пробы.

Наличие ОКБ требуется подтвердить:

- если в среде накопления имеет место сомнительная реакция (небольшое газообразование или только помутнение);

- если на среде Эндо выросли колонии с недостаточно четкими дифференциальными признаками лактозоположительных колиформных бактерий.

В этих случаях:

- проверяют наличие отпечатка на среде Эндо после снятия петлей подозрительных колоний;

- подтверждают способность к газообразованию при посеве изолированных 1-2 колоний каждого типа с каждого сектора на среду с лактозой в соответствии с п. 2.4.7 с последующей инкубацией посевов при температуре (37 ± 1) °С в течение 24 ч.

При отсутствии изолированных колоний проводят рассев на среду Эндо общепринятыми бактериологическими методами. Отрицательный ответ дают, если:

- в среде накопления нет признаков роста;

- на секторах среды Эндо нет роста;

- на секторах среды Эндо выросли не характерные для колиформных бактерий колонии (прозрачные, с неровными краями, расплывчатые, а также розовые без отпечатков на среде и т. п.);

- все колонии оказались оксидазоположительные;

- если в подтверждающем тесте на среде с углеводом не отмечено газообразования.

2.8.3.2. Определение термотолерантных колиформных бактерий

Для определения ТКБ работают с секторами среды Эндо, где выросли типичные лактозоположительные колонии, а в среде накопления обнаружено газообразование. Делают посев 2-3 изолированных колоний каждого типа с каждого сектора в пробирки с любой из лактозных сред, приготовленных в соответствии с п. 2.4.7.

Среду перед посевом нагревают на водяной бане или в термостате до 44 °С. Немедленно после посева пробирки помещают в термостат и инкубируют при температуре (44 ± 0,5) °С в течение 24 ч. Допускается просмотр посевов через 4-6 ч.

При образовании газа в среде накопления, росте на среде Эндо лактозоположительных бактерий и выявлении способности этих бактерий ферментировать лактозу до кислоты и газа в течение 24 ч при температуре 44 °С, дают положительный ответ на наличие в этом объеме пробы воды ТКБ. Во всех остальных случаях дают отрицательный ответ.

Для ускорения выдачи ответа на присутствие ТКБ производят высев 1 мл из объемов среды накопления, где отмечено помутнение и газообразование, в пробирки с лактозо-пептонной средой и поплавком или ваткой по п. 2.4.7.2 и прогретой предварительно до температуры 44 °С. Посевы выдерживают в термостате при температуре (44 ± 0,5) °С в течение 24 ч. При обнаружении кислоты и газа дают положительный ответ.

2.8.4. Учет результатов

После определения положительных и отрицательных результатов на наличие ОКБ, ТКБ в объемах воды, засеянной в среду накопления, вычисляют наиболее вероятное число (НВЧ) КОЕ в 100 мл по одной из таблиц прилож. 8, соответствующих схеме посева и полученным результатам.

Для расчета выбирают 3 таких последовательных десятикратных разбавления или объема воды, засеянной в среду накопления, в которых получены как положительные, так и отрицательные результаты. Если имеют место сочетания положительных и отрицательных результатов, отсутствующие в таблицах, то при повторении таких сочетаний более чем в 1% случаев следует искать причины в неправильной технике выполнения анализа.

В протоколе анализа указывают: НВЧ КОЕ ОКБ в 100 мл, НВЧ КОЕ ТКБ в 100 мл. Доверительный интервал не указывают.

2.9. Определение колифагов прямым методом

2.9.1. Определение понятия показателя

Колифаги - бактериальные вирусы, способные лизировать кишечную палочку и формировать зоны лизиса (бляшки) через (18 ± 2) ч при температуре (37 ± 1) °С на ее газоне на питательном агаре.

2.9.2. Значение показателя и область применения

Колифаги являются нормируемым показателем и предназначены для проведения текущего контроля качества воды поверхностных водоемов, служащих источником для питьевого и хозяйственно-бытового водоснабжения, водоснабжения пищевых предприятий, для рекреационного водопользования, а также в черте населенных мест в отношении возможного вирусного загрязнения.

2.9.3. Подготовка тест-культуры Е. coli K12F+ Str-r

На всех этапах исследования используют бактериальную взвесь, приготовленную следующим образом: культуру Е. coli K12F+ Str-r (п. 2.2.6) засевают в пробирку со скошенным питательным агаром со стрептомицином (п. 2.4.4). Через (18 ± 2) ч инкубации при температуре (37 ± 1) °С производят смыв бактерий с косяка 5 мл стерильного солевого раствора (п. 2.4.2.1) и по стандарту мутности готовят взвесь Е. coli в концентрации 109 бактериальных клеток в 1 мл.

Допускается в день анализа внести культуру Е. coli K12F+ Str-r в питательный бульон, при 37 °С инкубировать в течение 4 ч и использовать при внесении в питательный агар, расплавленный и остуженный до (44 ± 1) °С.

2.9.4. Выполнение анализа

Объем воды для посева выбирают в зависимости от степени ее загрязнения с таким расчетом, чтобы на чашках выросло до 300 БОЕ, без образования сливных зон. При посеве на чашку Петри 1 мл или соответствующих десятикратных разбавлений используют питательный агар в обычной прописи (п. 2.4.4), при посеве 100 мл исследуемой воды - питательный агар двойной концентрации (п. 2.4.4). В зависимости от плотности используемого агара проводят посевы воды по 10 мл на 10 чашек или по 20 мл на 5 чашек. Для освобождения исследуемой воды от сопутствующей бактериальной флоры, ее обрабатывают хлороформом из расчета 1 мл хлороформа на 10 мл воды. Пробу тщательно встряхивают и отстаивают в течение 15 мин при комнатной температуре для осаждения хлороформа. На исследование берут воду над хлороформом. В питательный агар (п. 2.4.4), расплавленный и остуженный до (44 ± 1) °С, добавить смыв Е. coli K12F+ Str-r (п. 2.9.3) из расчета 1,0 мл смыва на каждые 100 мл агара, перемешать. Для контроля культуры Е. coli на возможную контаминацию ее посторонними колифагами в одну чашку Петри вносят 10 мл стерильной водопроводной воды, прогретой до 20-25 °С, заливают 25 мл приготовленного агара с Е. coli K12F+ Str-r и осторожно перемешивают.

Исследуемые объемы воды вносят в стерильные чашки Петри и заливают, слегка приоткрывая крышки, 25 мл смеси агара с кишечной палочкой. При посеве 100 мл воды температуру пробы предварительно доводят до 20-25 °С.

Содержимое чашек осторожно перемешивают и оставляют при комнатной температуре до застывания. Чашки с застывшим агаром помещают дном вверх в термостат и инкубируют при температуре (37 ± 1) °С в течение (18 ± 2) ч.

2.9.5. Учет результатов

Просмотр посевов осуществляется в проходящем свете.

При исследовании 100 мл воды (5 чашек по 20 мл) подсчитывают и суммируют все бляшки, выросшие на чашках Петри.

Если посевная доза была меньше 100 мл, то число колифагов вычисляют по формуле:

, где

а - сумма бляшек на чашках;

V - объем исследуемой воды.

При исследовании децинормальных разведений, число колифагов в 100 мл воды вычисляют по формуле:

, где

а - сумма бляшек на чашке,

p1,2,3 - разведение.

3 - количество разведений (в данном примере их 3 - р1, р2, р3).

Результаты выражают в бляшкообразующих единицах (БОЕ) на 100 мл пробы воды. В контрольной чашке бляшки должны отсутствовать.

Предварительный учет результатов можно проводить через 5-6 ч инкубации. На этом этапе при наличии четких зон лизиса может быть выдан предварительный ответ о присутствии колифагов в воде.

Окончательный количественный учет прямого посева проводится через (18 ± 2) ч. Результаты выражают количеством бляшкообразующих единиц (БОЕ) на 100 мл пробы воды.

Если отмечен сливной рост бляшек и счет затруднителен, то по данным прямого посева может быть выдан качественный результат: "обнаружено в 100 мл воды".

При наличии зон лизиса в контрольной чашке результат исследования считается недействительным.

2.9.6. Постановка контролей

"Отрицательный контроль" - подтверждает отсутствие контаминации фагом питательных сред, лабораторной посуды, оборудования на этапах подготовки и проведения анализа, а также позволяет оценить способность тест-культуры Е. coli давать равномерный газон.

"Отрицательным контролем" служит исследование стерильной водопроводной воды, проводимое аналогично анализируемой пробе воды. С этой целью, в зависимости от посевной дозы исследуемой воды, в стерильную чашку Петри вносят от 1 до 20 мл стерильной водопроводной воды, заливают смесью мясопептонного агара с Е. coli и инкубируют (18 ± 2) ч при 37 °С.

В случае обнаружения бляшек колифагов в чашках с "отрицательным" контролем результаты исследования всей серии проб воды недействительны.

Следует проверить стерильность лабораторного оборудования, посуды, питательных сред, а также повторить контрольный посев на лизогенность тест-штамма Е. coli K12 F+ Str-r.

Для проверки культуры на лизогенность необходимо использовать новую пробирку с культурой, хранящейся на полужидком агаре (п. 2.4.7.1). В стерильную чашку Петри помещают 1 мл бактериальной взвеси и заливают расплавленным и остуженным до 45-49 °С питательным агаром, инкубируют при температуре 37 °С в течение (18 ± 2) ч.

Просмотр посевов осуществляют в проходящем свете. Наличие зон лизиса в контрольном посеве свидетельствует о спонтанно проявившемся свойстве культуры продуцировать фаги или контаминации ее колифагом в процессе работы.

Использование в работе лизогенной культуры запрещается. Необходимо получить новую лиофилизированную культуру (п. 2.2.6).

2.9.7. Методика подтверждения фаговой природы лизиса

В сомнительных случаях необходимо провести контрольный посев на подтверждение фаговой природы лизиса.

С этой целью бактериологической петлей извлекают участок агара с бляшкой колифага, вызывающей сомнение, помещают его в 5 мл питательного бульона, куда добавляют каплю тест-культуры Е. coli K12F+ Str-r и инкубируют при 37 °С в течение (18 ± 2) ч. Полученную культуру обрабатывают хлороформом или фильтруют через мембранный фильтр и исследуют на наличие фага. Высев осуществляют петлей или пипеткой на поверхность питательного агара, содержащего взвесь Е. coli, чашки инкубируют в термостате при 37 °С в течение (18 ± 2) ч. Наличие зон лизиса на поверхности агара расценивается как подтверждение наличия фага.

2.10. Определение патогенных бактерий семейства Enterobacteriaceae рода Salmonella

2.10.1. Область применения показателя

В соответствии с требованиями СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод" об отсутствии патогенных микроорганизмов в местах водопользования, контроль воды поверхностных водоемов осуществляют по определению бактерий рода Salmonella семейства Enterobacteriaceae и учитывают их отсутствие в 1000 мл воды как наиболее устойчивых из патогенных представителей этого семейства. Анализ на выделение других возбудителей инфекционных заболеваний с водным путем передачи выполняют только по эпидпоказаниям.

Бактерии рода Salmonella определяют: при выборе новых источников водоснабжения и зон рекреации; при установлении влияния выбросов сточных вод на водоем; при превышении нормативов по ОКБ и ТКБ и в повторно отобранных пробах; при ухудшении санитарно-гигиенической обстановки (появление новых источников загрязнения, при метереологических условиях, приводящих к смыву загрязнений с прилегающих территорий, экстремальных ситуациях и т.п.), а также при неблагоприятной санитарно-гигиенической и эпидемической ситуации. Частоту контроля определяют в каждом конкретном случае в соответствии с программой центров госсанэпиднадзора.

В водоемах, где уровни индикаторных микроорганизмов в местах водозаборов соответствуют требованиям СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод", периодический контроль на обнаружение сальмонелл необходимо предусмотреть: при несоблюдении режимов в зонах санитарной охраны водозаборов, особенно при сбросах недостаточно обеззараженных сточных вод; при химическом загрязнении; в водоемах с нарушенным естественным статусом (водохранилищах, каналах, нижних бьефах ГЭС и др.). При этом необходимо иметь в виду более длительные сроки выживаемости сальмонелл по сравнению с колиформами и, следовательно, снижение их индикаторного значения.

При обнаружении сальмонелл в местах рекреации необходимо рассмотреть вопрос о закрытии пляжа.

При обнаружении сальмонелл в местах водозаборов централизованного питьевого водоснабжения следует принять меры по усилению режимов очистки и обеззараживания, а при контроле их эффективности иметь в виду большую устойчивость сальмонелл в процессах обеззараживания по сравнению с ОКБ и ТКБ.

2.10.2. Выполнение анализа

Для определения сальмонелл исследуют 1000 мл воды водоемов, засевая по 500 мл в две из следующих сред накопления: селенитовый бульон по п. 2.4.19, магниевая среда по п. 2.4.20, среда Мюллера-Кауфмана по п. 2.4.17, тетратионатная среда по Preuss по п. 2.4.21 и другие апробированные для этих целей среды накопления.

2.10.2.1. Посев воды в среду Мюллера-Кауфмана для определения сальмонелл

К 500 мл исследуемой воды добавляют ингредиенты по прописи 2.4.17.

2.10.2.2. Посев воды в селенитовый бульон для определения

К 500 мл воды добавляют 500 мл селенитового бульона двойной концентрации по п. 2.4.19.

2.10.2.3. Посев воды в магниевую среду

К 500 мл исследуемой воды прибавляют навески и растворы ингредиентов по прописи п. 2.4.20.

2.10.2.4. Посев воды в тетратионатную среду

К 500 мл исследуемой воды добавляют 10 мл тетратианатной среды по п. 2.4.21.

2.10.2.5. Посев воды в магниевую среду для определения сальмонелл количественным методом

В случае необходимости количественного определения сальмонелл можно установить их концентрацию посевом в магниевую среду с титрованием в двух или трех параллельных рядах десятикратных разбавлений от 100 до 1 мл, прибавляя навески и растворы по прописи 2.4.20. Индекс сальмонелл определяют по таблицам прилож. 8.

2.10.2.6. Посев воды для определения сальмонелл методом мембранной фильтрации

Для посева 2 объемов по 500 мл отбирают 1000 мл воды. Каждый объем профильтровывают через один или несколько мембранных фильтров. Полученные фильтры из каждого объема помещают в 50-100 мл в любые две из перечисленных сред накопления. При затрудненной фильтрации большого объема пробы следует на фильтр с диаметром пор 0,45 мкм наложить фильтр с большим диаметром пор для задержания взвешенных частиц с последующим помещением на питательную среду обоих фильтров.

2.10.3. Ход анализа

Посевы воды в среды накопления инкубируют при температуре 37 °С в течение 18-20 ч. При обнаружении роста (помутнения) производят высев бактериологической петлей на две чашки с висмут-сульфитным агаром (п. 2.4.22). Рассев производят одним из методов получения изолированных колоний. Чашки с посевами инкубируют при температуре 37 °С в течение 18-20 ч.

На висмут-сульфитном агаре колонии сальмонелл круглые, черные, с металлическим блеском, с сероватым металлическим ободком вокруг колоний, так называемое "зеркало", зеленые с темным центром и без него, вызывающие потемнение среды под колонией.

При дальнейшей работе с культурами сальмонелл возможно использование SS агара (п. 2.4.23). На SS-arape колонии сальмонелл вырастают бесцветными. Колонии нежные, гладкие, круглые, слегка выпуклые с ровными краями, блестящие, полупрозрачные, диаметром 1,0-2,0 мм.

В отличие от патогенных бактерий, Е. coli образуют круглые, выпуклые, гладкие, малинового цвета колонии.

При обнаружении колоний, подозрительных на сальмонеллы, по 4-5 изолированных колоний с каждой чашки снимают для посева в пробирки с комбинированными средами для определения биохимических свойств, подтверждающих принадлежность к родам Salmonella (типа Клиглера, Олькеницкого и др.).

Окончательное определение биохимических и серологических свойств сероваров проводят по действующим инструкциям.

2.11. Определение кишечных вирусов

При санитарно-вирусологическом контроле воды поверхностных водоемов проводят концентрирование, детекцию и идентификацию вирусов.

2.11.1. Определение понятия показателя

Кишечные вирусы - вирусы, обитающие или транзиторно проходящие через желудочно-кишечный тракт, патогенные для человека, вызывающие заболевания с различной клинической картиной и степенью тяжести. В настоящее время из группы кишечных вирусов приведенным ниже методом определяются: энтеровирусы (вирусы полиомиелита 1, 2, 3 типа, вирусы группы ECHO, Коксаки В и некоторые серотипы Коксаки А); ротавирусы, антигены гепатита А и Е; аденовирусы.

2.11.2. Область применения

Кишечные вирусы в воде поверхностных водоемов рекомендуется определять:

- при выборе водоисточника;

- при превышении нормативного уровня колифагов;

- в случаях несоответствия качества воды по основным индикаторным микробиологическим показателям, а также при эпидемической ситуации в отношении кишечных вирусных инфекций в населенном пункте.

Информация о наличии или отсутствии энтеровирусов позволит судить:

- о степени риска для здоровья населения при использовании загрязненной вирусами воды;

- о возможности использования воды поверхностного водоема на данном участке в качестве источника хозяйственно-питьевого водоснабжения и в рекреационных целях;

- при проведении эпидемиологических исследований;

- эффективности работы очистных сооружений в отношении вирусного загрязнения.

2.11.3. Принцип метода

Метод основан на принципе сорбции вирусных частиц высокоэффективным сорбентом класса кремнеземов - макропористым стеклом марки МПС 1000 ВГХ и последующей десорбцией их небольшим объемом элюэнтов. Технологическая особенность метода заключается в том, что сорбент помещен в водопроницаемый флизелиновый пакет, который опускают в водный поток, что позволяет:

- исследовать большие объемы воды, и тем самым увеличить вероятность сорбции вирусных частиц;

- избежать механического загрязнения сорбента.

Достоинством использования флизелинового пакета с сорбентом является:

- высокая сорбционная емкость стекла;

- небольшой объем используемых элюирующих растворов, что обеспечивает дополнительное концентрирование вирусных частиц.

2.11.4. Подготовка и проведение исследования

2.11.4.1. Приготовление растворов

Десятикратные концентраты элюирующих растворов готовят на стерильной дистиллированной воде.

1) Растворяют 30,3 г триса (Tris [hydroxymethyl] aminomethane) в 300-400 мл воды, доводят значение рН до 9,1 концентрированной НСl и оставляют на 1 сутки при комнатной температуре. Затем проверяют (и при необходимости доводят еще раз) значение рН до 9,1. Конечный объем раствора (500,0 мл) получают добавлением дистиллированной воды.

2) 30,3 г триса + 145 г NaCl на 500,0 мл раствора, рН 9,1.

3) 150,0 г мясного экстракта (Beef Extract Powder) + 350 мл трис-буфера рН 9,1.

Растворы автоклавируют 15 мин при 1 атмосфере (121 °С).

Рабочие разведения элюэнтов получают добавлением 9 частей стерильной дистиллированной воды к 1 части концентрированного раствора.

2.11.4.2. Подготовка макропористого стекла

Для повышения сорбционных свойств макропористое стекло, представляющее собой белый порошок, обрабатывают следующим образом:

1) один объем стекла заливают в колбе одним объемом смеси (1:1) 3 %-ным раствором Н2О2 и 6 М НCl и кипятят в вытяжном шкафу в течение 1 ч (без пробки), соблюдая меры предосторожности. Полученное МПС отмывают большим количеством дистиллированной воды до нейтрального значения рН и высушивают при 100 °С;

2) в пакет из флизелина размером 5×7 см помещают 1 г подготовленного сорбента.

2.11.4.3. Подготовка хроматографической колонки

Колонки обрабатывают силиконовой жидкостью (Serva) для предотвращения адсорбции вирусов. Для этого внутреннюю поверхность колонки смачивают данной силиконовой жидкостью, после чего колонку выдерживают 1 ч при t = 100 °С. Силиконовую жидкость можно использовать многократно.

2.11.4.4. Отбор проб и обработка проб

Пакет с сорбентом закрепляют с помощью лески так, чтобы он оказался в потоке воды. После экспозиции в течение 3-7 суток пакет вынимают, помещают в новый полиэтиленовый мешочек и стерильный флакон и транспортируют в лабораторию в сумке-холодильнике. Каждую пробу маркируют с указанием населенного пункта, точки отбора, даты установки и времени экспозиции пакета. Материал доставляют в лабораторию в максимально короткий срок (не более 6 ч). Доставленные в лабораторию пробы регистрируют в рабочем журнале.

До проведения элюции вирусов пакеты в полиэтиленовом мешке или стерильном флаконе можно хранить в холодильнике при 4 °С не более 1 суток.

В лаборатории пакет с сорбентом извлекают из транспортировочной емкости и помещают в стерильную чашку Петри. Обрезают край пакета, вымывают стекло стерильной дистиллированной водой (~ 5 мл) с помощью пипетки в эту же чашку Петри и переносят пипеткой или через воронку в колонку объемом 5-10 мл. Вирусы элюируют последовательно 3 рабочими растворами элюэнтов по 3,0 мл каждый (рабочие разведения элюэнтов п. 2.11.4.1), собирая их в отдельные пенициллиновые флаконы.

В тех случаях, когда дальнейшие вирусологические исследования проводят на культуре клеток, полученные элюаты обрабатывают хлороформом и антибиотиками для удаления бактериальной флоры. Для этого к 1 объему элюата добавляют 1 объем хлороформа, интенсивно встряхивают 5-10 мин и центрифугируют 10 мин при 2000 об./мин для разделения фракций. Водную фракцию (верхнюю) аккуратно отбирают пипеткой в стерильный флакон и добавляют 1000 ЕД пенициллина (бензилпенициллина натриевую соль) и 10,0 мг сульфата стрептомицина. Обработанные элюаты до заражения культур ткани можно хранить при 4 °С в течение 3 суток. При температуре –20 °С элюаты можно хранить в течение 1 года. В случае необходимости многократного исследования элюаты делят на несколько порций, чтобы избежать повторного замораживания.

Исследования полученных элюатов на наличие энтеровирусов на культуре ткани рекомендуется проводить в соответствии с "Руководством по вирусологическим исследованиям на полиомиелит" (ВОЗ, 1998).

3. Санитарно-паразитологические исследования

3.1. Отбор, хранение и транспортирование проб

Отбор проб из поверхностных источников питьевого водоснабжения по количеству и кратности проводят в соответствии с СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод".

Отбор проб воды производят в чистые емкости. Сосуды больших объемов - молочные фляги, металлические и пластмассовые ведра и т.п., которые тщательно промывают кипяченой водой и ополаскивают отбираемой для анализа водой.

Пробы воды необходимо брать в створах, расположенных выше и ниже сброса стоков, у причалов, мест стоянок пассажирских и грузовых судов, выше и ниже населенных мест, в зонах рекреации, оздоровительных детских, спортивных и военных лагерей, по берегам и в середине водоема. Пробы отбирают с поверхности водоема, а также с различных глубин, начиная с 10-15 см от поверхности воды или от нижней кромки льда. Глубинные пробы можно отбирать с помощью пробоотборника гидробиологического типа "Пробоконг", снабженного погружным насосом, в соответствии с инструкцией по применению или другого с аналогичными характеристиками, разрешенного к применению в установленном порядке.

Пробы воды с поверхности водоема следует отбирать емкостями 1,5-2,0 л с интервалами 3-5 мин. Это позволяет в течение 40-60 мин взять усредненную пробу объемом 25 л.

Пробы воды могут доставляться в лабораторию без обработки или, в целях облегчения их транспортирования, после предварительной обработки (концентрирования материала путем фильтрования на месте отбора проб, в лаборатории водопроводной станции и др., с использованием типа ПВФ-142 полевая модификация).

С этой же целью может быть использована методика первичной концентрации паразитарных патогенов с помощью таких коагулянтов, как сульфат аммония, сульфат железа, сульфат меди в дозе 0,1-0,3 г/л.

В пробу воды на месте отбора добавляют коагулянт, затем тщательно перемешивают и отстаивают 1-2 ч. После этого надосадочную жидкость удаляют, а осадок переносят в сосуд объемом 1 л и доставляют в лабораторию. Содержимое этого сосуда вновь отстаивают 1-2 ч, а осадок после удаления надосадочной жидкости переносят в центрифужные пробирки 10-50 мл (в зависимости от объема осадка) и центрифугируют в течение 5 мин при 1500 об./мин. Надосадочную жидкость сливают, а к осадку добавляют 3 мл 1 %-ного раствора хлористоводородной кислоты для растворения хлопьев коагулянта, перемешивают и центрифугируют в таком же режиме. Надосадочную жидкость удаляют, а осадок обрабатывают по нижеописанной методике.

Пробы, не прошедшие предварительную обработку, хранят при температуре 15-20 °С не более двух суток.

В случае если первичная обработка пробы воды (фильтрование) проводилась вне лаборатории, использованные фильтры помещают в широкогорлый флакон или стеклянную банку, добавляют 30-50 мл исходной воды; закрывают флакон или банку завинчивающейся или притертой крышкой, маркируют, указывают дату, место отбора, количество профильтрованной воды и транспортируют в лабораторию для дальнейшего исследования. При невозможности исследования в день отбора материал хранят при 4 °С не более суток; при отсутствии необходимости определения жизнеспособности цист кишечных простейших и яиц гельминтов материал хранят при 4 °С не более 3-4 суток после добавления в него формальдегида с таким расчетом, чтобы концентрация его в суспензии составила 2 %.

3.2. Методики санитарно-паразитологического исследования воды поверхностных водоемов

Методики предназначены для обнаружения в воде цист патогенных простейших кишечника (лямблий, криптоспоридий, амебы дизентерийной, балантидия) и яиц гельминтов, представляющих непосредственную угрозу для здоровья человека при их заглатывании, при осуществлении контроля качества воды по паразитологическим показателям в источниках хозяйственно-питьевого водоснабжения и в водоемах рекреационного назначения.

3.2.1. Принцип методик с использованием флотантов

Цисты патогенных простейших кишечника и яйца гельминтов обнаруживаются при микроскопическом исследовании осадка, получаемого после центрифугирования не менее 4-кратно разведенного раствора флотанта с плотностью 1,26, в который искомые паразитарные агенты попадают из осадка, смываемого с мембранных фильтров поcле фильтрации через них исследуемой воды. Осаждение цист простейших и яиц гельминтов происходит за счет резкого снижения плотности флотанта, которая после разведения достигает 1,03 и менее, что ниже плотности паразитарных агентов.

3.3. Флотационный метод исследования воды

Оборудование:

- прибор для фильтрования типа ПВФ-142, ПМФ-70, УППВ;

- мембранные фильтры типа МФАС-СПА с размерами пор 1,5-3,0 мкм, МФАС-СПА-4 с размерами пор 2,4-4,5 мкм, прозрачные ATM с размерами пор 1,0-3,05. префильтры - капроновая сетка с ячейками 60-70 мкм;

- лотки, эмалированные кастрюли или ведра, акварельные кисточки, пинцеты.

Примечание. Допускается к использованию оборудование с аналогичными характеристиками, разрешенное к применению для этих целей в установленном порядке

Химреактивы:

- 33 %-ный водный раствор семиводного сульфата цинка (ZnSO4×7Н2О) - 331 г ZnSO4×7Н2О растворить в 1 л кипящей дистиллированной воды. После охлаждения до комнатной температуры измерить удельную плотность ареометром, которая должна быть не менее 1,25-1,26;

или 30 %-ный водный раствор сахарозы - 300 г сахарозы растворяют в 1 л горячей дистиллированной воды;

- 1 %-ный раствор Люголя;

- 6-8 %-ный раствор формалина;

- дистиллированная вода.

Ход исследования

Пробу воды фильтруют через мебранные фильтры типа МФАС-СПА или прозрачные аналитические трековые мембраны (ATM) в соответствии с инструкцией.

Весь полученный смыв с мембранных фильтров или после концентрации химреактивами центрифугируют в пробирках емкостью 10 мл и более в течение 5 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают.

Добавляют 6-8 мл 2 %-ного водного раствора формалина (или дистиллированной воды) и размешивают.

Суспензию вновь центрифугируют в течение 5 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают или отсасывают пипеткой.

К осадку добавляют 3 мл одного из флотантов с удельным весом не менее 1,26 (33 %-ный водный раствор семиводного сульфата цинка или 30 %-ный водный раствор сахарозы и т. п.) и тщательно перемешивают стеклянной палочкой.

Центрифугируют в течение 5 мин при 2000 об./мин или 10 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают или отсасывают пипеткой и переносят в центрифужную пробирку, разбавляя в 4 раза дистиллированной водой, и центрифугируют в течение 5 мин при 1500 об./мин.

Надосадочную жидкость осторожно сливают. Из осадка готовят препараты на предметных стеклах и микроскопируют под покровным стеклом при увеличении: объектив 10х-40х, окуляр 10х. Для исследования на цисты лямблий микропрепараты окрашивают раствором Люголя.

При микроскопии и идентификации паразитарные патогены в пробах воды необходимо дифференцировать от фитопланктона и гидробионтов.

3.4. Метод санитарно-паразитологического исследования воды с применением прозрачных аналитических трековых мембран

3.4.1. Характеристика аналитических трековых мембран

Аналитическая трековая мембрана (далее - трековая мембрана) из тонкой прозрачной полиэтилентерефталатной пленки со сквозными порами диаметром от 0,1 до 5,0 мкм.

Выпускаются диски мембран диаметром (25; 37; 47; 70; 142 мм), в соответствии с используемыми в лаборатории фильтровальными приборами.

При первичном использовании трековых мембран их микроскопируют до фильтрации, чтобы ознакомиться с формой и расположением пор.

Для фиксации диска трековой мембраны (или его фрагмента) на поверхность предметного стекла наносят 1-2 капли 50 %-ного раствора глицерина. Затем сверху накладывают трековую мембрану или ее фрагмент в виде полоски (размером с предметное стекло) и накрывают покровным стеклом. Микроскопируют при увеличениях: окуляр 7х, 10х; объектив 10х, 40х.

На трековой мембране будут хорошо видны сквозные поры в виде круглых образований с ровными краями без содержимого (напоминают пузырьки).

Дифференцировка пор трековой мембраны с паразитологическими объектами не представляет затруднений, т. к. размеры яиц гельминтов в 10-20 раз, а цист лямблий в 2-4 раза превышают размеры пор. Поры трековых мембран имеют четкие контуры, не имеют внутреннего содержимого и при микроскопии занимают все поля зрения.

3.4.2. Подготовка трековых мембран к фильтрации

Трековую мембрану (которая находится между бумажными прокладочными дисками, изготовленными из силиконизированной бумаги) извлекают пинцетом из заводской упаковки и помещают на фритту фильтродержателя прибора для фильтрования (диаметр диска трековой мембраны подбирают в зависимости от имеющейся в лаборатории фильтровальной установки), закрепляют крышкой или в корпусе и проводят фильтрование пробы воды в соответствии с инструкцией к прибору.

При фильтрации мутной, с видимыми загрязнениями, воды необходимо использовать предфильтры (прилагаемые к прибору для фильтрования или к набору аналитических трековых мембран).

3.4.3. Подготовка и микроскопия аналитических трековых мембран

После фильтрования пробы воды, трековую мембрану извлекают пинцетом, помещают в чашку Петри или эмалированный лоток поверхностью, которая прилегала к фритте.

Затем, придерживая трековую мембрану за края пинцетом, не задевая поверхности фильтрации во избежание нарушения целостности препарата и потери искомых патогенов, разрезают ее на отдельные полоски, размер которых соответствует размеру предметного стекла. Диски трековых мембран диаметром 25; 37; 47 мм можно микроскопировать на больших предметных стеклах не разрезая их на части.

Полоску трековой мембраны, поверхностью, которая прилегала к фритте помещают на предметное стекло, предварительно обработав его 50 %-ным раствором глицерина (для этого на поверхность предметного стекла наносят 1-2 капли 50 %-ного раствора глицерина и стеклянной палочкой распределяют по всей поверхности). Всю поверхность полоски трековой мембраны накрывают сверху покровными стеклами (24×24 мм). Микроскопируют при увеличениях: окуляр 7х или 10х; объектив 10х; 40х.

При исследовании на цисты лямблии, на полоску трековой мембраны, которая уже помещена на предметное стекло с глицерином, наносят сверху каплю 1 %-ного раствора Люголя (пропись см. в прилож. 13) и накрывают покровными стеклами (24×24 мм) всю поверхность полоски. Микроскопируют при увеличениях: окуляр 7х или 10х; объектив 40х.

Использование прозрачных аналитических трековых мембран облегчает санитарно-паразитологический анализ воды и значительно сокращает время его проведения. Их использование может проходить по двум вариантам:

первый - трековые мембраны применяют при пробоподготовке воды и выполнении вышеописанной стандартной методики в соответствии с МУК 4.2.964-00 "Санитарно-паразитологические исследования воды хозяйственного и питьевого использования";

второй - отфильтрованный с помощью трековой мембраны осадок непосредственно микроскопируют на ней в соответствии с методическими рекомендациями Минздрава России N 22 ФЦ/3314 от 26.03.03 "Использование прозрачных аналитических трековых мембран для санитарно-паразитологических исследований воды" (п. 2.1.2).

Примечание.

При использовании трековых мембран на приборах вакуумного фильтрования (ПВФ-142 и др.) необходимо учитывать, что толщина диска трековой мембраны меньше стандартных мембранных фильтров МФАС-СПА, что может послужить причиной отсутствия вакуума

Для избежания погрешности, перед укладкой диска трековой мембраны на фритту, по краю фильтродержателя укладывают (в соответствии с инструкцией) уплотнительные кольца, которые прилагаются к каждой стандартной заводской упаковке трековых мембран.

3.5. Методика санитарно-паразитологического исследования воды на наличие ооцист криптоспоридий

Методика предназначена для обнаружения в воде ооцист криптоспоридий, а также может использоваться для определения цист лямблий и яиц гельминтов.

3.5.1. Исследование воды методом последовательной фильтрации через систему аналитических трековых мембранных фильтров (АТМ)

Оборудование и инструментарий:

- прозрачные аналитические трековые мембраны (ATM) с диаметром пор 5,0 и 2,5 мкм и капроновая сетка (префильтр) с диаметром пор 25,0;

- префильтр (капроновая сетка) с диаметром пор 67-70 мкм;

- прибор для фильтрования типа ПВФ-142; ПВФ-35; ПНФ-70;

- пинцеты, кисточки акварельные (широкие, мягкие или полужесткие), пластмассовые пластины, лотки, эмалированные кастрюли или ведра.

Химреактивы:

- краска по Циль-Нильсену - фуксин основной 2 г растворить в 12 мл спирта 96 %; фенола 5 г растворить в 50 мл дистиллированной воды; слить вместе растворы фуксина и фенола, долить дистиллированной воды до 100 мл и тщательно перемешать;

- дистиллированная вода.

3.5.2. Ход исследования на цисты лямблий, яйца и личинки гельминтов

Предварительно на заборное устройство прибора для фильтрования ПВФ-142 крепится префильтр в виде капроновой сетки с размерами ячейки 67-70 мкм (поставляется в комплекте с ATM).

Аналитическую трековую мембрану (ATM) с диаметром пор 5,0 мкм помещают на фритту* фильтродержателя прибора для фильтрования и сверху укладывают фильтр с размером пор 25,0 мкм, уплотняют кольцом из эластичной резины. Далее закрепляют крышкой и проводят фильтрацию в соответствии с инструкцией к прибору. Необходимо профильтровывать пробу воды в отдельную емкость, т. к. она будет подвергаться повторной фильтрации.

После фильтрации обе мембраны последовательно по одной осторожно снимают пинцетом с фритты на заранее подготовленные тонкие пластмассовые квадратные пластинки размером 150×150 мм2 (поставляются в комплекте с ATM) и переносят в лоток.

Профильтрованную в отдельную емкость пробу воды повторно фильтруют с использованием ATM с диаметром пор 2,5 мкм, которую укладывают на фритту* фильтродержателя между двумя уплотнительными кольцами из полиэтилена или обрезиненного лавсана (поставляются в комплекте с ATM).

После фильтрации ATM осторожно снимают пинцетом с фритты на заранее подготовленные тонкие пластмассовые квадратные пластинки размером 150×150 мм2 (поставляются в комплекте с ATM) и переносят в лоток.

Со всех трех фильтров аккуратно и тщательно, придерживая диск с мембраной пинцетом за край, производят смыв осадка с обеих поверхностей мембран и с пластиковых дисков, на которых эти фильтры лежали. Смыв проводят плоской, средней жесткости кисточкой (поставляемой в комплекте с ATM) в лоток с дистиллированной водой. При этом периодически споласкивают мембраны и диски дистиллированной водой из химического стакана. Общий объем дистиллированной воды при смыве осадка со всех 3 фильтров не должен превышать 300-500 мл.

Концентрированный смыв сливают из лотка в воронки прибора для фильтрации типа ПВФ-35 или ПВФ-47 и фильтруют через ATM с диаметром пор 2,5 мкм. В зависимости от первоначальной загрязненности воды используют 1-2 или 3 воронки. Если прибор с одной воронкой, то фильтруют последовательно, меняя мембраны.

После фильтрации ATM осторожно снимают пинцетом и переносят на предметное стекло, предварительно обработав его 50%-ным раствором глицерина (для этого на поверхность предметного стекла наносят 1-2 капли 50 %-ного раствора глицерина и стеклянной палочкой распределяют по всей поверхности), затем сверху мембраны наносят каплю 1 %-ного раствора Люголя и накрывают покровным стеклом (24×24 мм) всю поверхность мембраны.

Микроскопируют при увеличениях: окуляр 7х или 10х; объектив 10х; для идентификации яиц гельминтов и исследования на цисты лямблий - объектив 40х.

______________________________

* Для плотного (без складок) прилегания ATM к фритте рекомендуется:

а) ATM вместе с калькой уложить мембраной на фритту и провести ладонью несколько раз по кальке. За счет появления электростатики мембрана прилипнет к фритте, а калька легко отделится от мембраны;

б) смочить фритту и мембрану дистиллированной водой и плотно уложить ATM на фритту без кальки.

3.5.3. Ход исследования на ооцисты криптоспоридий

После проведения фильтрации через ATM с диаметром пор 2,5 мкм на приборе типа ПВФ-35 или ПВФ-47, полученного концентрированного смыва, мембрану(ы) тщательно высушивают в лотке на воздухе.

Затем окрашивают ATM в кювете (лотке, чашке Петри) карболовым фуксином (краска по Циль-Нильсену) в течение 20 мин.

После окраски фильтры промывают под проточной водой, предварительно закрепив ATM за край химического стакана, с таким расчетом, чтобы струя воды не попадала на поверхность мембраны, а закрепленный фильтр свободно плавал в воде. Фильтр считается промытым, когда из стакана польется прозрачная вода.

Затем обесцвечивают (дифференцируют) 5-10 %-ной серной кислотой, в течение 10-20 с и снова промывают под проточной водой, предварительно закрепив ATM за край химического стакана, с таким расчетом, чтобы струя воды не попадала на поверхность мембраны, а закрепленный фильтр свободно плавал в воде. Фильтр считается промытым, когда из стакана польется прозрачная вода.

Затем дополнительно окрашивают 0,2 %-ным водным раствором метиленового синего или 5 %-ной малахитовой зелени в 10 %-ном этиловом спирте в течение 3-5 мин (при отсутствии этих ингредиентов данный этап можно исключить). Промывают под струей проточной воды, предварительно закрепив ATM за край химического стакана, с таким расчетом, чтобы струя воды не попадала на поверхность мембраны, а закрепленный фильтр свободно плавал в воде. Фильтр считается промытым, когда из стакана польется прозрачная вода.

Пинцетом фильтр из воды переносят в кювет (лоток, чашку Петри) и тщательно высушивают на воздухе.

Окрашенный фильтр (ATM) помещают на предметное стекло, предварительно смазанное иммерсионным маслом (для лучшей адгезии), накрывают покровным стеклом и микроскопируют под иммерсией при увеличении микроскопа: окуляр 10х, объектив 90х или 100х.

Результат окрашивания

Ооцисты криптоспоридий окрашиваются в разные оттенки ярко красного (малинового, вишневого) цвета и имеют вид округлых образований диаметром 5-6 микрон с отчетливо видимой оболочкой и структурированным содержанием (можно наблюдать наличие 4 веретенообразных темно-окрашенных спорозоитов) на синем или зеленом основном фоне.

Примечание. Для определения в воде цист лямблий и ооцист криптоспоридий при наличии в лабораториях специального оборудования, иммунореагентов, химреактивов может быть использован метод иммуномагнитной сепарации с флуорохромами.

3.6. Идентификация выявленных возбудителей кишечных паразитарных болезней

При микроскопировании подсчитывают число паразитарных патогенов во всем объеме осадка, что соответствует их числу во всей исследованной пробе. Одновременно определяют систематическую принадлежность обнаруживаемых паразитических организмов; идентификация их проводится по следующим признакам.

Цисты лямблий - овальная форма, размеры 10-14 мк в длину и 6-10 мк в ширину; незрелые цисты содержат 2 ядра, зрелые - 4; ядра находятся у переднего полюса цисты. Оболочка цисты отчетливо выражена и большей частью отстает от протоплазмы, что является одним из характерных отличий цист лямблий от цист других простейших. Внутри цисты вдоль по средней линии проходят две опорные нити - аксостили; в косом или поперечном направлении лежат характерные парабазальные тела (2 - в незрелых и 4 - в зрелых цистах), нередко заметен сложно свернутый жгутиковый аппарат. Плотность - 1,06-1,09.

Цисты амебы дизентерийной - округлая, редко овальная форма, размеры от 10 до 16 мк; молодые цисты содержат 1-2 ядра с центрально расположенной звездчатой кариосомой, зрелые цисты содержат 4 ядра, в зрелых четырехъядерных и незрелых двухъядерных цистах ядра расположены в различных плоскостях; оболочка цист двухконтурная в виде светлого прозрачного ободка. Одноядерные цисты почти всегда содержат в большом количестве гликоген, который в виде крупной вакуоли с нерезкими очертаниями занимает обычно больше половины цисты и раствором Люголя окрашивается в темно-коричневый цвет. Плотность - 1,08-1,1.

Следует иметь в виду, что в природной воде могут встречаться цисты Entamoeba dispar, идентичные цистам дизентерийной амебы, но не обладающие патогенными свойствами для человека. В этом случае следует в протоколе исследования отмечать находки без указания видовой принадлежности таких цист. Для идентификации их необходимы дополнительные специальные исследования. Однако и в данной ситуации должна быть настороженность в отношении эпидемического неблагополучия.

Цисты Балантидия кишечного - правильная круглая форма, плотная двухконтурная оболочка, средний размер около 50 мк. Внутри цист имеется крупное бобовидное ядро. Протоплазма однородна, гликоген в ней распылен равномерно. Под оболочкой в некоторых цистах заметно углубление, представляющее собой редуцированный цитостом - органеллу, соответствующую началу пищеварительной трубки многоклеточных. Ресничный покров отсутствует. Плотность - 1,1.

Яйца аскариды человеческой (свиной) - оплодотворенные яйца овальной или шаровидной формы. Наружная оболочка крупнобугристая, толстая, коричневого цвета (иногда встречаются яйца без наружной бугристой оболочки). Размеры яиц 50-70×40-50 мк. Яйцеклетка мелкозернистая и шаровидная, расположена в центре яйца. Плотность - 1,10-1,14.

Зрелое яйцо (способное заразить при заглатывании) содержит внутри подвижную личинку, свернувшуюся кольцевидно или перекрестно.

Яйца токсокары (аскариды собачьей) - почти круглые, 65-75 мк в диаметре, с нежноячеистой наружной толстой оболочкой темно-коричневого цвета, внутри яйца видна округлая зародышевая клетка. Зрелые инвазионные яйца содержат внутри подвижную свернувшуюся кольцом или перекрестно личинку. Плотность - 1,22.

Яйца власоглава - симметричные, имеют лимонообразную или бочонковидную форму. Оболочка темно-коричневая, толстая. На обоих полюсах имеются светлоокрашенные пробковидные образования. Размеры яиц 50-54×23-26 мк. В зрелых инвазионных яйцах видна подвижная личинка. Плотность - 1,16-1,22.

Яйца острицы - асимметричные. Одна сторона заметно уплощена, другая выпукла. Размеры яиц 50-60×30-32 мк. Оболочка тонкая, гладкая и бесцветная. Яйца могут быть на различных стадиях созревания, до головастикоподобной личинки включительно. Плотность - 1,14.

Яйца цепня карликового - оболочка яйца бесцветная, тонкая, гладкая. Форма овальная. Размер яиц 40×50 мк, эмбриофора (зародыш) почти шаровидная (29×30 мк), с длинными нитевидными придатками на полюсах. Плотность - 1,12.

Онкосферы тениид (цепня свиного и эхинококков) - овальная форма, размеры 31-40×20-30 мк; имеют тонкую наружную оболочку и толстую радиально-исчерченную внутреннюю оболочку темно-коричневого цвета. Внутри онкосферы находится зародыш-эмбриофора с шестью зародышевыми крючьями. Плотность - 1,24.

Отрицательный результат анализа не гарантирует отсутствия паразитарных патогенов в пробе, поэтому результат исследования должен представляться в протоколе термином "не обнаружены". Обнаружение даже одного экземпляра паразитарных патогенов в 1 пробе питьевой воды указывает на эпидемическое неблагополучие в системе питьевого водоснабжения.

3.7. Визуальная оценка вероятной жизнеспособности цист патогенных простейших кишечника и яиц гельминтов

Оценка вероятной жизнеспособности цист патогенных простейших и яиц гельминтов визуально проводится по следующим критериям, подтверждающим жизнеспособность:

- целость наружной оболочки (отсутствие ее разрывов, вдавлений, выбухания, сморщивания);

- четкая внутренняя структура цисты или яйца - у цист четко видны ядра, отсутствует зернистость. У цист лямблий, кроме того, видны аксостили, жгутиковый аппарат, медиальное тело. Для яиц гельминтов (аскарид, токсокар, власоглавов, остриц) характерно наличие дробящейся зародышевой клетки или подвижной личинки. У живых онкосфер тениид и карликового цепня зародышевые крючья расположены попарно, а у мертвых - беспорядочно;

- при окраске препарата 1 %-ным водным раствором эозина жизнеспособные цисты лямблий не воспринимают окраску в течение первых 5 мин, мертвые окрашиваются сразу же в розовый цвет. Поэтому указанную окраску следует использовать до микроскопии только в том случае, когда на изучение препарата потребуется не более 5 мин. Часто просмотр мазка длится 15-30 мин, тогда 1 %-ный водный эозин можно вводить аккуратно, не сдвигая препарат под покровное стекло пипеткой в точке, где при предварительном просмотре уже обнаружены цисты лямблий;

- жизнеспособность онкосфер тениид и яиц аскарид, содержащих личинку, определяют путем окрашивания препарата смесью, содержащей метиленовый синий. Живые онкосферы тениид, а также личинки, находящиеся внутри яиц аскарид, не окрашиваются в течение первых 15 мин. Мертвые окрашиваются сразу в синий цвет;

- жизнеспособность онкосфер тениид можно также определить по движению зародышей при воздействии на них пищеварительными ферментами. Для этого исследуемый осадок, содержащий онкосферы, помещают на часовое стекло в искусственный дуоденальный сок. Стекло ставят в термостат при 36-38 °С на 4 ч. Живые зародыши освобождаются от оболочек, а мертвые - нет;

- оболочки жизнеспособных онкосфер растворяются также в подкисленном пепсине (рН 5-6) и в щелочном растворе трипсина (рН 8-8,5) через 6-8 ч при температуре 38 °С.

Схема выполнения методики санитарно-паразитологического исследования воды и изображения определяемых с ее помощью цист кишечных простейших и яиц гельминтов представлены в прилож. 11, 12, 13.

4. Библиографические данные

1. Федеральный закон от 30 марта 1999 г. N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения".

2. Постановление Правительства Российской Федерации от 24 июля 2000 г. N 554 "Об утверждении Положения о государственной санитарно-эпидемиологической службе Российской Федерации и Положения о государственном санитарно-эпидемиологическом нормировании".

3. Водный Кодекс Российской Федерации от 16 ноября 1995 г.

4. СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод".

5. СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества".

6. СП 1.2.731-99 "Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами".

7. МУ 2.1.4.1057-01 "Организация внутреннего контроля качества санитарно-микробиологических исследований воды".

8. МУК 4.2.1018-01 "Санитарно-микробиологический анализ питьевой воды".

9. ГОСТ Р 51592-00 "Вода. Общие требования к отбору проб".

10. ГОСТ Р 51593-00 "Вода питьевая. Отбор проб".

11. ГОСТ 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения. Гигиенические, технические требования и правила выбора".

12. ГОСТ 17.1.5.02-80 "Охрана природы. Гидросфера. Гигиенические требования к зонам рекреации водных объектов".

13. Методические рекомендации по санитарно-вирусологическому контролю объектов окружающей среды. М., 1982.

14. Руководство по контролю качества питьевой воды / ВОЗ. Женева, 1994. Т. 1

15. Руководство по вирусологическим исследованиям полиомиелита / ВОЗ. Женева, 1998.

Приложения для микробиологических исследований

В приложениях даны методы определения санитарно-микробиологических показателей для комплексной оценки качества воды при выборе новых источников водоснабжения и решении вопроса во время проведения оздоровительных мероприятий или закрытия пляжа в зонах рекреации в соответствии с требованиями ГОСТ 2761-84 "Источники централизованного хозяйственно-питьевого водоснабжения" и ГОСТ 17.1.5.02-80 "Охрана природы. Гидросфера. Гигиенические требования к зонам рекреации водных объектов".

Показатели определяют дополнительно к основным, приведенным в п.п. 2.7 - 2.11.

Приложение 1

(обязательное)

Определение общего числа микроорганизмов, образующих колонии на питательном агаре

1.1. Определение понятия показателя

К общему числу микроорганизмов (ОМЧ) относят мезофильные аэробы и факультативные анаэробы (МАФАМ), способные образовывать на питательном агаре колонии, видимые при увеличении в 2 раза при температуре 37 °С в течение 24 ч (ОМЧ 37 °С) и при температуре 22 °С в течение 72 ч (ОМЧ 22 °С).

1.2. Значение показателя и область применения

Общее число микроорганизмов не нормируется в воде водоемов в местах действующих водозаборов централизованного питьевого водоснабжения, черте населенных мест, зонах рекреации, поскольку уровень этой группы микроорганизмов в большей мере зависит от природных особенностей каждого объекта, времени года и т.п.

Однако при выборе нового источника водоснабжения или места рекреации в воде водоемов дополнительно следует определять число колоний, вырастающих:

- при температуре 37 °С в течение 24 ч;

- при температуре 22 °С в течение 72 ч.

ОМЧ при температуре инкубации 37 °С - индикаторная группа микроорганизмов, в числе которых определяют в большей мере аллохтонную микрофлору, внесенную в водоем в результате антропогенного загрязнения, в т. ч. фекального.

ОМЧ при температуре инкубации 20-22 °С - индикаторная группа микроорганизмов, в числе которых, помимо аллохтонной, определяют водную микрофлору данного водоема (автохтонную).

При температуре 22 °С, как правило, вырастает больше сапрофитных микроорганизмов, чем при температуре 37 °С. Соотношение численности этих групп микроорганизмов позволяет судить об интенсивности процесса самоочищения, активными участниками которого они являются. Эта разница более выражена при завершении процесса самоочищения (коэффициент соотношения ОМЧ 22 °С : ОМЧ 37 °С равен четырем и выше). В местах загрязнения хозяйственно-бытовыми сточными водами численные значения обеих групп близки.

Показатель позволяет получать дополнительную информацию о санитарном состоянии водоемов, источниках загрязнения, процессах самоочищения.

При производственном контроле исходной воды, поступающей на сооружения водопроводных станций, определяют ОМЧ 37 °С с целью установления эффективности очистки и обеззараживания.

1.3. Выполнение анализа при определении ОМЧ 37 °С

Из каждой пробы делают посев 1 мл и по 1 мл из одного или двух разбавлений, выбирая объем воды для посева из расчета, чтобы не менее чем на 2-х чашках выросло от 20 до 300 колоний. Выбранный объем засевают в 2-х повторностях.

При исследовании заведомо чистых вод с содержанием сапрофитов до 300 КОЕ в 1 мл делают посевы пробы воды без разбавления по 1 мл в 2 повторностях. При исследовании воды неизвестной степени микробного загрязнения производят посев 3-4 десятикратных объемов, начиная с 1 мл.

После тщательного перемешивания пробы готовят разбавления (п. 2.5) и немедленно вносят по 1 мл воды из пробы или из соответствующего разбавления в стерильные чашки Петри, слегка приоткрывая крышки, заранее промаркированные. Сразу же после внесения воды в каждую чашку вливают 8-10 мл (на чашку диаметром 95 мл) расплавленного и остуженного до 45-46 °С питательного агара после фламбирования края посуды, в которой он содержался. Затем быстро смешивают содержимое чашек, равномерно распределяя по всему дну, избегая образования пузырьков воздуха, попадания агара на края и крышку чашки. Эту процедуру производят на горизонтальной поверхности, где чашки оставляют до застывания агара. Целесообразно сохранять расплавленный агар во время посевов в водяной бане, автоматически поддерживающей температуру 45-49 °С, или в термостате.

Тонкий слой агара увеличивает эффективность учета сапрофитной микрофлоры водоемов за счет лучших условий для роста аэробных и факультативно анаэробных бактерий, преобладающих в водоемах. Колонии вырастают более крупные, легко подсчитываемые на фоне прозрачного тонкого слоя агара. Ограничен рост расплывчатых колоний.

Две чашки Петри с посевами одной повторности помещают в термостат и инкубируют при температуре (37 ± 1) °С в течение (24 ± 2) ч.

Две другие чашки Петри с посевами инкубируют при температуре 20-22 °С в течение (72 ± 2) ч.

1.4. Учет результатов

После инкубации подсчитывают все выросшие на чашке колонии, видимые при увеличении в 2 раза. Подсчет следует производить только на тех чашках, на которых выросли изолированные колонии в количестве от 20 до 300. При посеве 1 мл неразбавленной воды ведут подсчет на чашках с любым количеством колоний, меньшим 300, и не менее чем на двух чашках.

Подсчитанное число колоний на каждой чашке суммируют и делят на объем воды в мл, засеянной на те чашки, на которых производился подсчет. Результат выражают в числе колониеобразующих единиц (КОЕ) в 1 мл исследуемой воды, округляя до 2-3 значимых чисел.

В протокол анализа заносят результат "число КОЕ ОМЧ 37 °С в 1 мл" или "число КОЕ ОМЧ 22 °С в 1 мл".

Результат можно представить на основании подсчета колоний на одной чашке (с отметкой в протоколе анализа), если на других чашках:

а) рост расплывчатых колоний распространился на всю поверхность чашки;

б) число колоний превышает 300-500;

в) при посеве из разбавлений выросло менее 20 колоний.

Если на всех чашках имеет место рост расплывчатых колоний, не распространившийся на всю поверхность, или выросло более 300 колоний и анализ нельзя повторить, подсчитывают колонии на секторе чашки с последующим пересчетом на всю поверхность. В этих случаях в протоколе отмечают "число КОЕ ОМЧ в 1 мл ориентировочно".

Если рост расплывчатых колоний распространился на всю поверхность чашки, и подсчет невозможен, то в протоколе анализа отмечают "ползучий рост". Если подсчет невозможен из-за слишком многочисленного роста, то в протоколе записывают "сплошной рост".

В примечании отмечают особые обстоятельства, которые могут повлиять на результат (превышение срока хранения пробы, изменение температуры и времени инкубации посевов, отклонения от правил при учете результатов и т. д.).

Воспроизводимость результатов метода может быть достигнута при строгом соблюдении деталей техники анализа, а также при использовании питательного агара одинакового состава. Каждую новую партию агара проверяют при посеве воды водоемов (по сравнению с предыдущей партией) в соответствии с МУ 2.1.4.1057-01 "Организация внутреннего контроля качества санитарно-микробиологических исследований воды", отмечая кроме числа колоний их размер и скорость образования видимого роста.

Приложение 2

(обязательное)

Определение спор сульфитредуцирующих клостридий

2.1. Определение понятия показателя

Сульфитредуцирующие клостридии - спорообразующие анаэробные палочковидные микроорганизмы, редуцирующие сульфит натрия до сульфидов на железосульфитном агаре при температуре 44 °С в течение 16-18 ч.

2.2. Значение показателя

В воде источников централизованного питьевого водоснабжения клостридии определяют в связи с использованием этого показателя для оценки эффективности обработки питьевой воды на этапах технологических процессов, поскольку споры сульфитредуцирующих клостридий являются более устойчивыми, чем вегетативные клетки бактерий к воздействию обеззараживающих агентов, а также неблагоприятных факторов, действующих на микроорганизмы в воде водоемов.

Общепринятым является представление о том, что клостридии указывают на давнее фекальное загрязнение. Однако длительность выживаемости этих споровых микроорганизмов в воде водоемов превышает таковую сальмонелл, что свидетельствует о наличии у этого показателя одного из наиболее важных свойств индикаторного микроорганизма.

2.3. Выполнение анализа

Споры сульфитредуцирующих клостридий определяют методом прямого посева.

Пробу воды 20-100 мл перед посевом прогревают на водяной бане при температуре (75 ± 5) °С в течение 15 мин для исключения вегетативных форм (время отсчитывают после достижения указанной температуры).

Железосульфитный агар готовят во флаконах в соответствии с п. 2.4.10 небольшими порциями непосредственно перед посевом (повторному расплавлению агар не подлежит). В течение посева поддерживают среду нагретой до 70-80 °С в водяной бане.

Для посева выбирают 2-3 объема воды с таким расчетом, чтобы выросли изолированные колонии, ориентируясь на результаты, полученные ранее при анализе воды в этой же точке. Посевы вносят в стерильные пробирки и заливают горячим железо-сульфитным агаром высоким столбиком. Агар наливают по стенке пробирки во избежание попадания воздуха. Немедленно после заливки пробирки опускают в емкости с холодной водой для создания анаэробных условий в толще агара. После застывания посевы инкубируют при температуре 44 °С в течение 18-24 ч.

Учет результатов в соответствии с МУК 4.2.1.1018-00 "Санитарно-микробиологический анализ питьевой воды".

Приложение 3

(обязательное)

Определение Esherichia coli методом мембранной фильтрации

3.1. Определение понятия показателя

Esherichia coli (преимущественно Е. coli) - индикаторная группа бактерий, включает такие термотолерантные колиформы, которые помимо ферментации лактозы при температуре 44 °С образуют индол из триптофана.

3.2. Значение показателя и область применения

Е. coli определяют дополнительно при выборе источника водоснабжения для оценки качества воды поверхностных водоемов с целью расшифровки характера и происхождения микробного загрязнения, превышающего норматив. При оценке полученных данных имеет значение число Е. coli в воде и их соотношение с числом ОКБ.

Наличие в воде Е. coli свыше 100 КОЕ в 100 мл свидетельствует о недавнем поступлении фекального загрязнения, о незавершенных процессах самоочищения, о несоблюдении требований к очистке сточных вод и т. п. В этих случаях соотношение числа колиформных бактерий и Е. coli, как правило, менее 10 и водопользование из такого водоема представляет потенциальную эпидемическую опасность.

3.3. Выполнение анализа

Для определения числа Е. coli используют посевы, которые сделаны на мембранных фильтрах для проведения анализа на ОКБ.

На фильтрах, где выросли изолированные колонии, подсчитывают темно-красные колонии с металлическим блеском. Каждую колонию при росте до 10-15 КОЕ или по 3-4 колонии каждого подсчитанного типа подтверждают на принадлежность к Е. coli. Одновременно с пересевом в среду с лактозой в соответствии с п. 2.4.7 для подтверждения термотолерантных свойств эту же колонию пересевают в пробирку со средой, содержащей триптофан (п. 2.4.25), для определения образования индола. Обе среды перед посевом должны быть прогреты до температуры (44-45) °С и немедленно перенесены в термостат для инкубации при температуре (44 ± 0,5) °С в течение 24 ч. Образование кислоты и газа в среде с лактозой подтверждает наличие ТКБ.

Продукцию индола определяют одним из общепринятых методов - с помощью индикаторных бумажек (п. 2.4.24) или с реактивами Эрлиха, Ковача (п. 2.4.26) и др. Положительный ответ на наличие Е. coli дают при ферментации лактозы до кислоты и газа при температуре 44 °С и при образовании индола.

Для упрощения анализа тест на образование индола можно заменить посевом в лактозный бульон с борной кислотой (п. 2.4.8), прогретый до температуры 44-45 °С с последующей инкубацией при температуре (44 ± 0,5) °С в течение 24 ч. Положительный ответ на Е. coli дают при помутнении и газообразовании.

Типичные оксидазоотрицательные колонии учитывают как Е. coli при ферментации лактозы до кислоты и газа при температуре 44 °С и образовании индола из триптофана или при ферментации лактозы в среде с борной кислотой до образования газа при температуре 44 °С.

Приложение 4

(обязательное)

Определение Escherichia coli титрационным методом

Если в посевах в среду накопления обнаружен газ, а при высеве на среду Эндо выросли темно-красные колонии с металлическим блеском, то одновременно подтверждают наличие ТКБ и Е. coli, для чего по 2-3 типичные колонии с каждого сектора засевают параллельно в две пробирки: с лактозной средой по п. 2.4.7 и со средой, содержащей триптофан (п. 2.4.25) для установления способности ферментировать лактозу до кислоты и газа при температуре 44 °С и продуцировать индол.

Посев производят в среды, прогретые до температуры 44-45 °С, немедленно переносят в термостат и инкубируют при температуре(44 ± 0,5) °С в течение 24 ч.

Продукцию индола определяют одним из общепринятых методов - с помощью индикаторных бумажек (п. 2.4.24) или с реактивом Ковача (п. 2.4.26). Положительный ответ дают при наличии кислоты и газа в лактозной среде и при образовании индола.

Вместо среды, содержащей триптофан, можно сделать посев в лактозный бульон с борной кислотой (п. 2.4.8), соблюдая описанные выше условия посева и инкубации. Положительный ответ на наличие в среде накопления Е. coli дают при помутнении и образовании газа. При использовании этой среды индол не определяют.

Приложение 5

(обязательное)

Определение энтерококков методом мембранной фильтрации

5.1. Определение понятия показателя

Энтерококки - грамположительные, каталазоотрицательные, полиморфные, круглые, чаще слегка вытянутые с заостренными концами кокки, располагающиеся попарно или в коротких цепочках, способные расти на питательных средах с 0,04 % азида натрия, а также устойчивые при развитии к тестам Шермана (повышенной температуре 45 °С, щелочности рН 9,6, содержанию 40 % желчи и 6,5 % натрия хлористого). К группе энтерококков относят Enterococcus faecalis, который имеет основное индикаторное значение, Enterococcus faecium и Enterococcus durans.

5.2. Значение показателя и область применения

Энтерококки определяют в качестве дополнительного показателя при выборе нового источника централизованного водоснабжения. В воде действующих источников водоснабжения и в местах рекреации этот показатель используют для подтверждения фекального характера загрязнения. Энтерококки рекомендуется определять при превышающем нормативы уровне общих колиформных бактерий и при низком числе Е. coli (менее 50-100 в 100 мл воды), а также в случаях несоответствия оценки качества воды по основным показателям и санитарной ситуации на водных объектах.

При числе энтерококков свыше 50 в 100 мл предполагается поступление свежего фекального загрязнения и потенциальная эпидемическая опасность.

5.3. Выполнение анализа

Объем испытуемой воды для посева выбирают с таким расчетом, чтобы не менее чем на двух фильтрах выросли изолированные колонии в количестве от 5 до 50 при диаметре фильтра 35 мм и от 10 до 100 при диаметре фильтра 47 мм.

При этом можно ориентироваться на результаты предыдущих исследований воды в этом же месте водоема и на рекомендации таблицы прилож. 9.

При исследовании воды неизвестного качества количество засеваемых десятикратных объемов увеличивают до 3-4.

Отмеренный объем воды фильтруют через мембранные фильтры, как это описано в п. 2.6.

Фильтры с посевами помещают на азидную среду (п. 2.4.14) и инкубируют при температуре (37 ± 1) °С в течение 48 ч.

Для учета выбирают фильтры, на которых выросло число колоний, указанное выше.

Подсчитывают колонии, характерные для энтерококков: выпуклые, с ровными краями, темно-малиновые, розовые, светло-розовые, равномерно окрашенные или с темно-красным не четко оформленным центром.

Очень мелкие (на пределе видимости невооруженным глазом), плоские разных оттенков, ярко-малиновые с четко выраженным центром и бесцветным ободком колонии не учитывают. Дифференциацию энтерококков от посторонней микрофлоры можно проводить по морфологии колоний под бинокулярной лупой.

При необходимости подтвердить наличие энтерококков по 2-3 колонии каждого типа:

- микроскопируют после окраски по Граму (МУК 4.2.1018-01) и при обнаружении в мазках грамположительных, как правило, слегка вытянутых с заостренными концами диплококков, дают положительный ответ;

- пересевают секторами на солевой агар с ТТХ (п. 2.4.15) и после 24-48 ч инкубации посевов при температуре 37 °С энтерококки на среде дают равномерный нежный рост на протяжении всего штриха. Иные бактерии на этой подтверждающей среде не растут;

- выполняют каталазный тест, нанося петлей культуру на предметное стекло. После подсушивания на воздухе добавляют каплю свежеприготовленной 3 %-ной перекиси водорода, прикрывают покровным стеклом. При отсутствии пузырьков газа - каталазоотрицательный тест. Контрольная каталазоположительная культура - любой вид стафилококков.

5.4. Учет результатов

Подсчитывают число колоний энтерококков на фильтрах, где выросло менее 50-70 колоний, суммируют и определяют по формуле

, где

X - число КОЕ энтерококков в 100 мл исследуемой воды;

а - число подсчитанных энтерококков в сумме;

V - объем воды, профильтрованной через фильтры, на которых велся учет.

В протоколе исследования выдают "число КОЕ энтерококков в 100 мл".

Приложение 6

(обязательное)

Определение энтерококков титрационным методом

6.1. Выполнение анализа

Объем воды выбирают с таким расчетом, чтобы в минимальных объемах или разбавлениях получить один или несколько отрицательных результатов. При этом следует ориентироваться на результаты предыдущих анализов воды в этом же месте водоема и на рекомендации таблицы прилож. 10.

Каждый объем воды или ее разбавление засевают параллельно в 2 или 3 порции щелочно-полимиксиновой среды (ЩЭС) в соответствии с п. 2.4.11. Объемы 100, 50 и 10 мл засевают в равные объемы среды двойной концентрации; 1 мл исследуемой воды или ее разбавления засевают в 5 мл среды нормальной концентрации. Посевы инкубируют при температуре (37 ± 1) °С.

Через 24 ч производят предварительный учет. Из посевов, где отмечены признаки роста (помутнение или помутнение и изменение цвета среды), высевают на 4-6 секторов одной из плотных питательных сред - молочно-ингибиторной (п. 2.4.12), энтерококкагар или азидной (п. 2.4.14). Порции среды, в которых признаки роста отсутствуют, оставляют при температуре 37°С еще на 24 ч, после чего из сосудов, в которых дополнительно появилось помутнение и изменение цвета среды, делают высев на сектора одной из перечисленных выше плотных питательных сред.

Через 24-48 ч инкубации посевов на молочно-ингибиторной среде при температуре (37 ± 1) °С в качестве положительных результатов отмечают наличие аспидно-черных, выпуклых с металлическим блеском (Enterococcus faecalis), а также сероватых мелких колоний (Enterococcus faecium, Enterococcus durans).

При высеве на сектора азидной среды учет энтерококков после инкубации посевов проводят в соответствии с п. 5.3.

В сомнительных случаях убедиться в наличии на секторах энтерококков можно путем посева на солевой агар с ТТХ в соответствии с п. 2.4.15, микроскопии после окраски мазков по Граму.

6.2. Учет результатов

После определения положительных и отрицательных результатов в объемах посеянной в среду накопления воды определяют наиболее вероятное число (НВЧ) энтерококков в 100 мл воды по одной из таблиц прилож. 8, соответствующей схеме посева и полученным результатам.

В протоколе анализа выдают - НВЧ КОЕ энтерококков в 100 мл.

6.3. Упрощенный метод определения энтерококков

Допускается использовать лактозо-пептонную среду не только для накопления колиформных бактерий при работе титрационным методом, но и для накопления энтерококков. Упрощенный метод может быть применен при исследовании воды водоемов, где уровень загрязнения по ОКБ не превышает 103/100 мл. Метод непригоден при исследовании сточных вод и воды водоемов в местах их выпуска, так как дает заниженный результат.

После высева на сектора среды Эндо для определения колиформных бактерий посевы в лактозо-пептонную среду продолжают инкубировать до 48 ч при температуре (37 ± 1) °С. Из посевов, где имеет место помутнение, независимо от наличия или отсутствия газа, делают высев на сектора азидной среды. При высеве из среды накопления необходимо часть среды сверху осторожно, не взбалтывая, удалить пипеткой, оставшуюся часть размешать и троекратно нанести материал бактериологической петлей диаметром 2-3 мм на поверхность плотной азидной среды п. 2.4.14. Посев производят штрихом, к концу которого должны быть получены изолированные колонии. Молочно-ингибиторную среду и энтерококкагар при выполнении этого метода не применять.

При необходимости подтвердить наличие энетерококков на секторах делают микроскопию окрашенных по Граму мазков, пересевают на подтверждающую среду и определяют каталазную активность в соответствии с п. 5.3. Определяют НВЧ энтерококков в 100 мл по соответствующим полученным результатам таблиц прилож. 8.

Приложение 7

(обязательное)

Метод определения числа стафилококков

Стафилококки определяют в воде водоемов, используемых для купания, как показатель загрязнения воды микрофлорой верхних дыхательных путей и кожных покровов человека.

При оценке качества воды индикаторами считают стафилококки, обладающие лецитовителлазной активностью, в основном Staphylococcus aureus. Сигнальное значение для регламентации нагрузки на зону купания имеет обнаружение свыше 10 стафилококков в 100 мл воды.

7.1. Метод мембранных фильтров

Пробу в объеме 50 мл фильтруют через 2-3 фильтра с таким расчетом, чтрбы получить изолированные колонии.

Фильтры помещают на желточно-солевой агар (п. 2.4.16) и инкубируют при температуре 37 °С в течение 24 ч.

Подсчитывают блестящие выпуклые колонии белого, палевого, золотистого цвета, окруженные радужной с перламутровым блеском зоной; 96-98 % таких колоний образованы Staphylococcus aureus.

При необходимости подтвердить принадлежность таких бактерий к Staphylococcus aureus подозрительные колонии пересевают на желточно-солевой агар бляшками, микроскопируют, определяют плазмокоагулазную активность. При наличии мелких грамположительных кокков, располагающихся в виде гроздей, и коагулировании плазмы дают положительный ответ.

Число колоний стафилококков делят на объем воды, профильтрованной через фильтры, на которых велся учет, и умножают на 100.

7.2. Титрационный метод

Делают посевы 10, 1 и 0,1 мл исследуемой воды в 2-3 повторностях в стерильную пептонную воду с хлоридом натрия; 1 и 0,1 мл вносят в среду накопления, содержащую 10% хлорида натрия и 1% пептона.

Для посева 10 мл заготавливают впрок сухие навески хлорида натрия по 1 г, стерилизуя их сухим жаром, и 25%-ный стерильный раствор пептона.

К 10 мл исследуемой воды прибавляют соответственно 1 г хлорида натрия и 1 мл 25 %-ного раствора пептона.

Посевы инкубируют при температуре 37 °С в течение 48 ч. Высев из посевов производят на желточно-солевой агар.

Вычисление числа стафилококков в 100 мл воды производят по соответствующим таблицам прилож. 8.

Приложение 8

(обязательное)

Таблицы расчета наиболее вероятного числа микроорганизмов

Таблица 8.1

Расчет наиболее вероятного числа бактерий в 100 мл воды поверхностных водоемов, обеззараженных сточных вод

Число положительных объемов

НВЧ бактерий в 100 мл

двух объемов по 1,0 мл

двух объемов по 0,1 мл

двух объемов по 0,01

1

2

3

4

0

0

0

менее 50

0

0

1

50

0

0

2

90

0

1

0

50

0

1

1

90

0

1

2

140

0

2

0

90

0

2

1

140

0

2

2

190

1

0

0

60

1

0

1

120

1

0

2

190

1

1

0

130

1

1

1

200

1

1

2

280

1

2

0

210

1

2

1

290

1

2

2

370

2

0

0

230

0

0

0

менее 50

2

0

1

500

2

0

2

950

2

1

0

620

2

1

1

1300

2

1

2

2100

2

2

0

2400

2

2

1

7000

2

2

2

более 24 000

При исследовании других объемов воды, помимо 1; 0,1 и 0,01, соответственно уменьшают или увеличивают НВЧ. Например, при исследовании объемов 10; 1 и 0,1 мл НВЧ уменьшают в 10 раз; при исследовании объемов 0,1; 0,01 и 0,001 мл НВЧ увеличивают в 10 раз; при исследовании объемов 0,01; 0,001 и 0,0001 мл НВЧ увеличивают в 100 раз и т. д.

Если при исследовании воды сделан посев более чем трех десятикратных объемов воды или разбавлений, то учитывают 3 такие последовательные объема, в последнем из которых получен один или несколько отрицательных результатов. Например: 10 мл - обе пробирки положительны, 1 мл - аналогично, 0,1 мл - положительный результат только в одной пробирке, 0,01 мл - отрицательный результат в обеих пробирках. Учитывают объемы 1; 0,1 и 0,01 мл

Таблица 8.2

Расчет наиболее вероятного числа бактерий в 100 мл воды водоемов

Число положительных результатов из

Нвч бактерий в 100 мл

Число положительных результатов из

НВЧ бактерий в 100 мл

трех объемов по 1 мл

трех объемов по 0,1 мл

трех объемов по 0,01 мл

трех объемов по 1 мл

трех объемов по 0,1 мл

трех объемов по 0,01 мл

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0

0

0

менее 30

2

0

0

91

0

0

1

30

2

0

1

140

0

0

2

60*

2

0

2

200*

0

0

3

90*

2

0

3

260*

0

1

0

30

2

1

0

150

0

1

1

61*

2

1

1

200

0

1

2

92*

2

1

2

270*

0

1

3

120*

2

1

3

340*

0

2

0

62*

2

2

0

210

0

2

1

93*

2

2

1

280

0

2

2

120*

2

2

2

350*

0

2

3

160

2

2

3

420*

0

3

0

94*

2

3

0

290

0

3

1

130*

2

3

1

360*

0

3

2

160*

2

3

2

440*

0

3

3

190*

2

3

3

530*

1

0

0

36

3

0

0

230

1

0

1

72

3

0

1

390

1

0

2

110*

3

0

2

640

1

0

3

150*

3

0

3

950*

1

1

0

73

3

1

0

430

1

1

1

110

3

1

1

750

1

1

2

150*

3

1

2

1200

1

1

3

190*

3

1

3

1600*

1

2

0

110

3

2

0

930

1

2

1

150*

3

2

1

1500

1

2

2

200*

3

2

2

2100

1

2

3

240*

3

2

3

2900

1

3

0

160*

3

3

0

2400

1

3

1

200*

3

3

1

4600

1

3

2

240*

3

3

2

11000

1

3

3

290*

3

3

3

более 11000

Примечание.

1)* Вероятность ниже допустимого уровня.

2) Схему посева табл. 8.2 используют при необходимости получения более точных результатов.

Таблица 8.3

Расчет наиболее вероятного числа бактерий в 100 мл воды незагрязненных водоемов

Число положительных результатов из

НВЧ бактерий в 100 мл

одного объема по 50 мл

пяти объемов по 10 мл

пяти объемов по 1 мл

1

2

3

4

1

2

3

4

0

0

0

менее 1

0

0

1

1

0

0

2

2

0

1

0

1

0

1

1

2

0

1

2

3

0

2

0

2

0

2

1

3

0

2

2

4

0

3

0

3

0

3

1

5

0

4

0

5

1

0

0

1

1

0

1

3

1

0

2

4

1

0

3

6

1

2

3

4

1

1

0

3

1

1

1

5

1

1

2

7

1

1

3

5

1

2

0

5

1

2

1

7

1

2

2

10

1

2

3

12

1

3

0

8

1

3

1

11

1

3

2

14

1

3

3

8

1

3

4

21

1

4

0

13

1

4

1

17

1

4

2

22

1

4

3

28

1

4

4

35

1

4

5

43

1

5

0

24

1

5

1

35

1

5

2

54

1

5

3

92

1

5

4

160

1

5

5

более 240

Приложение 9

(справочное)

Схема посева воды из различных объектов при работе методом мембранных фильтров

Объект исследования

Объем засеваемой воды (мл) для определения

колиформных бактерий

энтерококков

Водоемы, не загрязняемые сточными водами

100; 50; 10; 1

100; 50; 10

Водоемы, загрязняемые сточными водами

10; 1; 0,1; 0,01

10; 1; 0,1

Водоемы в зоне влияния выпуска сточных вод

0,1; 0,01; 0,001; 0,0001

1; 0,1; 0,01

Приложение 10

(справочное)

Схема посева воды из различных объектов при работе титрационным методом

Объект исследования

Объем засеваемой воды (мл) для определения

колиформных бактерий

энтерококков

Водоемы, не загрязняемые сточными водами

2 или 3 повторности по:

10; 1; 0,1

50; 5 повторностей по:

10; 1

 

2 или 3 повторности по:

10; 1; 0,1; 0,01

2 или 3 повторности по:

100; 10; 1; 0,1

Водоемы, загрязняемые сточными водами

2 или 3 повторности по:

1; 0,1; 0,01; 0,001

2 или 3 повторности по:

10; 1; 0,1; 0,01

Водоемы в зоне влияния выпусков сточных вод

2 или 3 повторности по:

0,1; 0,01; 0,001; 0,0001; 0,00001

2 или 3 повторности по:

1; 0,1; 0,01; 0,001

Примечание. Схему посева в 2 или 3 повторностях выбирают в зависимости от необходимой степени точности получаемых результатов.

Схему посева 50 мл, 5 по 10 мл и 5 по 1 мл используют при исследовании воды чистых водохранилищ.

Приложение 11

Цисты патогенные кишечных простейших и яйца гельминтов, определяемые методикой санитарно-паразитологического исследования воды

Приложение 12

Яйца гельминтов, определяемые методикой санитарно-паразитологического исследования воды

Приложение 13

Схема выполнения методики использования прозрачных аналитических трековых мембран

 >>>  ПОИСК ДОКУМЕНТОВ  
  Дополнительные материалы  [ − свернуть ]  
Утвержден: Главный государственный санитарный врач РФ
Дата введения: 1 июня 2000 г.
скачать бесплатно МУК 4.1.967-99 "Определение общего хрома в питьевой и пресной воде хемилюминисцентным методом"
Утвержден: Главный государственный санитарный врач РФ
Дата введения: 1 июня 2000 г.
скачать бесплатно МУК 4.1.968-99 "Определение концентрации меди в питьевой и пресной воде хемилюминесцентным методом"
Утвержден: Главный государственный санитарный врач РФ
Дата введения: 1 июля 2001 г.
скачать бесплатно МУК 4.2.1018-01 "Санитарно-микробиологический анализ питьевой воды"

    Д15 Фото: домик 6х6 с крыльцом 2х4 и мансардным этажом 66.19 1 Домик 6х6 с крыльцом 2х4 и мансардным этажом

    251/193 Фото: дом комбинированный, на высоком фундаменте и террасой вокруг 251 5 2 Дом комбинированный, на высоком фундаменте и террасой вокруг

    Булатниково Фото: дом из бруса со вторым светом в эркере гостиной 100.5 4 1 Дом из бруса со вторым светом в эркере гостиной

    П-16а Фото: дом 6х6 из профилированного бруса 63 2 Дом 6х6 из профилированного бруса

    СП-45 Фото: жилой дом из сэндвич-панелей, с балкономи и эркером 160 3 2 Жилой дом из сэндвич-панелей, с балкономи и эркером


 Рейтинг@Mail.ru   По вопросам работы сайта и сотрудничества обращайтесь к администратору adm@stroyplan.ru.
При использовании материалов портала - ccылка, доступная для индексации, на сайт обязательна.
© 2006-2016 "СТРОЙПЛАН"
    Все права защищены.